1 We have $S=-\left(\frac{\partial F}{\partial T}\right)_{V}=-\frac{4}{T} F$ and therefore the entropy value for $\left(T_{j}, V_{j}\right)$ is

$$
S_{j}=\frac{4 \pi^{2}}{45} \frac{k_{\mathrm{B}}^{4}}{(\hbar c)^{3}} V_{j} T_{j}^{3}
$$

and we can express all quantities in terms of the temperature and the entropy. In particular, we have $F=-\frac{1}{4} S T$ and $U=F+S T=\frac{3}{4} S T$.
(a) For the isothermal transitions $1 \rightarrow 2$ and $3 \rightarrow 4$, the work extracted is $W_{1 \rightarrow 2}=$ $F_{1}-F_{2}=-\frac{1}{4}\left(S_{1}-S_{3}\right) T_{1}$ and $W_{3 \rightarrow 4}=F_{3}-F_{4}=-\frac{1}{4}\left(S_{3}-S_{1}\right) T_{3}$. For the isentropic transitions $2 \rightarrow 3$ and $4 \rightarrow 1$, the work extracted is $W_{2 \rightarrow 3}=U_{2}-U_{3}=$ $\frac{3}{4} S_{3}\left(T_{1}-T_{3}\right)$ and $W_{4 \rightarrow 1}=U_{4}-U_{1}=\frac{3}{4} S_{1}\left(T_{3}-T_{1}\right)$.
The heat absorbed in the isothermal transitions $1 \rightarrow 2$ and $3 \rightarrow 4$ is $Q_{1 \rightarrow 2}=$ $\left(S_{3}-S_{1}\right) T_{1}>0$ and $Q_{3 \rightarrow 4}=\left(S_{1}-S_{3}\right) T_{3}<0$, and there is no heat absorbed in the isentropic transitions $2 \rightarrow 3$ and $4 \rightarrow 1, Q_{2 \rightarrow 3}=Q_{4 \rightarrow 1}=0$.
As a check, one verifies immediately that the total work extracted is equal to the net heat absorbed:

$$
\begin{aligned}
W_{1 \rightarrow 2}+W_{2 \rightarrow 3}+W_{3 \rightarrow 4}+W_{4 \rightarrow 1} & =\left(S_{3}-S_{1}\right)\left(T_{1}-T_{3}\right) \\
Q_{1 \rightarrow 2}+Q_{2 \rightarrow 3}+Q_{3 \rightarrow 4}+Q_{4 \rightarrow 1} & =\left(S_{3}-S_{1}\right)\left(T_{1}-T_{3}\right)
\end{aligned}
$$

(b) We get $\frac{\left(S_{3}-S_{1}\right)\left(T_{1}-T_{3}\right)}{\left(S_{3}-S_{1}\right) T_{1}}=\frac{T_{1}-T_{3}}{T_{1}}$ for the efficiency, which is the expected efficiency of a Carnot cycle.

2

(a) At the critical point, we have $\left(\frac{\partial P}{\partial v}\right)_{T}=0$ and also $\left(\frac{\partial^{2} P}{\partial v^{2}}\right)_{T}=0$. These require $\frac{R T}{(v-b)^{2}}=\frac{2 a}{(v+c)^{3} T} \quad$ and $\quad \frac{R T}{(v-b)^{3}}=\frac{3 a}{(v+c)^{4} T} \quad$ or $\quad 3(v-b)=2(v+c)$.

Accordingly, the critical molar volume is $v_{\text {cr }}=3 b+2 c$; then, the critical temperature is $T_{\mathrm{cr}}=\left(\frac{8}{27 R} \frac{a}{b+c}\right)^{1 / 2}$, and the critical pressure is $P_{\mathrm{cr}}=$ $\frac{1}{12}\left(\frac{2 R}{3} \frac{a}{(b+c)^{3}}\right)^{1 / 2}$. These give $\frac{P_{\mathrm{cr}} v_{\mathrm{cr}}}{R T_{\mathrm{cr}}}=\frac{3 b+2 c}{8(b+c)}$.
(b) We know that $\left.\frac{\mathrm{d} P(T)}{\mathrm{d} T}\right|_{T_{\mathrm{cr}}}=\left.\frac{\partial P(T, v)}{\partial T}\right|_{T_{\mathrm{cr}}, v_{\mathrm{cr}}}$. Here, this gives

$$
\left.\frac{\mathrm{d} P(T)}{\mathrm{d} T}\right|_{T_{\mathrm{cr}}}=\left.\left(\frac{R}{v-b}+\frac{a}{(v+c)^{2} T^{2}}\right)\right|_{T_{\mathrm{cr}}, v_{\mathrm{cr}}}=\frac{7}{8} \frac{R}{b+c}=7 \frac{P_{\mathrm{cr}}}{T_{\mathrm{cr}}} .
$$

Therefore, we have

$$
P(T)=\left(7 \frac{T}{T_{\mathrm{cr}}}-6\right) P_{\mathrm{cr}}
$$

for temperatures just below the critical temperature.

3

(a) The single-particle energies are $\left(j_{1}+j_{2}\right) \hbar \omega$ with $j_{1}=j_{2}=0$ for the ground state and $j_{1}, j_{2}=0,1,2,3, \ldots$ for the excited states (but not $j_{1}=0$ and $j_{2}=0$). For $j=j_{1}+j_{2}$, there are $j+1$ states with energy $\varepsilon_{j}=j \hbar \omega$. Accordingly, the expected number of bosons in the ground state and in the exited states are

$$
\left\langle N_{0}\right\rangle=\frac{z}{1-z}, \quad\left\langle N_{\mathrm{ex}}\right\rangle=\sum_{j=1}^{\infty} \frac{(j+1) z}{\mathrm{e}^{\beta \varepsilon_{j}}-z}=\sum_{j=1}^{\infty} \frac{(j+1) z}{\mathrm{e}^{j \beta \hbar \omega}-z} .
$$

(b) For low temperature, $\beta \hbar \omega \gg 1$, we have $\frac{(j+1) z}{\mathrm{e}^{j \beta \hbar \omega}-z} \cong(j+1) z \mathrm{e}^{-j \beta \hbar \omega}$ and only the $j=1$ term matters in the sum, so that

$$
\left\langle N_{\mathrm{ex}}\right\rangle \cong 2 z \mathrm{e}^{-\beta \hbar \omega}=\frac{2\left\langle N_{0}\right\rangle}{\left\langle N_{0}\right\rangle+1} \mathrm{e}^{-\beta \hbar \omega} .
$$

(c) The sum over j for $\left\langle N_{\text {ex }}\right\rangle$ in (a) converges to a finite value for all positive temperatures and all values of the fugacity $z \leq 1$, including $z=1$. It follows that there is a maximum number of bosons than can be in the excited states for $T>0$, and we get Bose-Einstein condensation if there are rather more particles than can fit into the excited states.
(a) $\quad m$ and w are intensive because they have the same values independent of the system size; N is extensive since it is proportional to the system size.
(b) The canonical partition function is

$$
Q(\beta, m, w, N)=\frac{1}{N!}\left[\int \frac{(\mathrm{d} \boldsymbol{r})(\mathrm{d} \boldsymbol{p})}{(2 \pi \hbar)^{3}} \mathrm{e}^{-\beta\left(\frac{1}{2 m} \boldsymbol{p}^{2}+w r^{3}\right)}\right]^{N},
$$

where

$$
\int \frac{(\mathrm{d} \boldsymbol{p})}{(2 \pi \hbar)^{3}} \mathrm{e}^{-\beta \frac{1}{2 m} \boldsymbol{p}^{2}}=\frac{1}{\lambda^{3}} \quad \text { with } \quad \lambda=\hbar \sqrt{\frac{2 \pi \beta}{m}}
$$

as usual, and

$$
\int(\mathrm{d} \boldsymbol{r}) \mathrm{e}^{-\beta w r^{3}}=4 \pi \int_{0}^{\infty} \mathrm{d} r r^{2} \mathrm{e}^{-\beta w r^{3}}=\frac{4 \pi}{3 \beta w} .
$$

Accordingly, we have

$$
Q(\beta, m, w, N)=\frac{1}{N!}\left(\frac{4 \pi}{3 \lambda^{3} \beta w}\right)^{N} \propto \beta^{-\frac{5}{2} N} m^{\frac{3}{2} N} w^{-N} .
$$

(c) It follows that

$$
\begin{aligned}
\frac{1}{N}\langle E\rangle & =-\frac{1}{N} \frac{\partial}{\partial \beta} \log (Q(\beta, m, w, N))=\frac{5}{2 \beta}=\frac{5}{2} k_{\mathrm{B}} T, \\
\frac{1}{N}\left\langle E_{\text {kin }}\right\rangle & =\frac{m}{N \beta} \frac{\partial}{\partial m} \log (Q(\beta, m, w, N))=\frac{3}{2 \beta}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{5} \frac{\langle E\rangle}{N}, \\
\frac{1}{N}\left\langle E_{\text {pot }}\right\rangle & =-\frac{w}{N \beta} \frac{\partial}{\partial w} \log (Q(\beta, m, w, N))=\frac{1}{\beta}=k_{\mathrm{B}} T=\frac{2}{5} \frac{\langle E\rangle}{N} .
\end{aligned}
$$

Clearly, $\left\langle E_{\text {kin }}\right\rangle+\left\langle E_{\text {pot }}\right\rangle=\langle E\rangle$.

