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Finally,

G = F +PV = F −V
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)
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)
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(b) Since P = −
(
∂F

∂V

)
T

∝ T 4 does not depend on V , the isothermal curves are

simply those with constant P . And since S ∝ V T 3 ∝ V P 3/4, the isentropic
curves are those with V 4P 3 = constant.

(c) In CP = T

(
∂S

∂T

)
P

, we need changes of the temperature for constant pressure

but, for the photon gas, P is a function of T only, and so T is constant when P
is constant. Therefore, there is no meaningful CP value.
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(a) The single-particle energies are εj = jh̄ω with j = 0 for the ground state and
j = 1, 2, 3, . . . for the excited states. Accordingly, the expected number of bosons
in the ground state and in the exited states are

〈N0〉 =
z

1− z
, 〈Nex〉 =

∞∑
j=1

z

eβεj − z
=
∞∑
j=1

z

e jβh̄ω − z
.



(b) For low temperature, βh̄ω � 1, we have
z

e jβh̄ω − z
∼= ze−jβh̄ωand only the

j = 1 term matters in the sum, so that

〈Nex〉 ∼= ze−βh̄ω =
〈N0〉
〈N0〉+ 1

e−βh̄ω .

(c) The sum over j for 〈Nex〉 in (a) converges to a finite value for all positive
temperatures and all values of the fugacity z ≤ 1, including z = 1. It follows
that there is a maximum number of bosons than can be in the excited states for
T > 0.

3 We recall that an Ising chain with N particles, no on-site energy, and N − 1
next-neighbor interaction links of strength J has a free energy of

F = −kBT log
(
2[2 cosh(K)]N−1

)
,

which is F = −NkBT log
(
2 cosh(K)

)
for N � 1, with K = βJ = J/(kBT ).

(a) For J ′ = 0, we just have two Ising chains with 1
2
N � 1 particles each, so that

F (T, J, 0) = 2×
[
−1

2
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(
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.

(b) For J = 0, we have 1
2
N two-particle chains with one link each, so that

F (T, 0, J ′) =
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2
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with K ′ = βJ ′ = J ′/(kBT ).

(c) We have F (T, J, J ′) = F (T, J, 0) +
〈
E

(1)
k

〉(0)
with (0) referring to the J ′ = 0

situation of (a), and

E
(1)
k = −J ′

1
2
N∑

j=1

s1js2j,

where s1j is the s value for site j in chain 1 and s2j is the s value for the partner
site in chain 2. Since these values are uncorrelated and 〈sj〉 = 0 for an Ising
chain without on-site energy, we have 〈s1js2j〉(0) = 〈s1j〉(0)〈s2j〉(0) = 0 and so
get

F (T, J, J ′) = −NkBT log
(
cosh(K)

)
+O(J ′

2
) .

There is no first-order term.
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(a) In (4.1.9), we do not have the contribution from the electron-electron interaction and

write
−Ze2

r0
for the chemical potential µ. This gives
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and thus gives r0 = (18)1/3Z−1/3a0.

(b) For the kinetic energy we get
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and the potential energy is

Epot = −
∫

(dr)
Ze2

r
ρ(r) = − 4

3π
Ze2r20

(
2Z

a0r0

) 3
2

1∫
0

dxx

(
1

x
− 1

) 3
2

︸ ︷︷ ︸
=

(− 1
2
)! ( 3

2
)!

2! = 1
2
3π
4= −1

2

Ze2

r0
12Z = −6Z2 e

2

r0
= −2Ekin ,

so that
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(c) We have ? = (3/2)1/3 > 1 > 0.7687 because we ignore the repulsive electron-electron
interaction and, as a consequence, the binding energy is larger.


