(a) Writing $F(T, V)=-\frac{\pi^{2}}{45} \frac{V}{(\hbar c)^{3}}\left(k_{\mathrm{B}} T\right)^{4}$, we have $S=-\left(\frac{\partial F}{\partial T}\right)_{V}=-\frac{4}{T} F$ and $\left(k_{\mathrm{B}} T\right)^{3}=\frac{45}{4 \pi^{2}} \frac{S}{k_{\mathrm{B}}} \frac{(\hbar c)^{3}}{V}$. This gives

$$
\begin{aligned}
U(S, V) & =F+T S=-3 F=\frac{\pi^{2}}{15} \frac{V}{(\hbar c)^{3}}\left(\frac{45}{4 \pi^{2}} \frac{S}{k_{\mathrm{B}}} \frac{(\hbar c)^{3}}{V}\right)^{4 / 3} \\
& =\frac{3}{4}\left(\frac{45}{4 \pi^{2}}\right)^{1 / 3}\left(\frac{S}{k_{\mathrm{B}}}\right)^{4 / 3}\left(\frac{V}{(\hbar c)^{3}}\right)^{-1 / 3} .
\end{aligned}
$$

Then $P=-\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{1}{3 V} U$ gives $\frac{V}{(\hbar c)^{3}}=\frac{1}{4}\left(\frac{45}{\pi^{2}}\right)^{1 / 4}\left((\hbar c)^{3} P\right)^{-3 / 4} \frac{S}{k_{\mathrm{B}}}$ and

$$
H(S, P)=U+P V=\frac{4}{3} U=\left(\frac{45}{\pi^{2}}\right)^{1 / 4} \frac{S}{k_{\mathrm{B}}}\left((\hbar c)^{3} P\right)^{1 / 4}
$$

Finally,
$G=F+P V=F-V\left(\frac{\partial F}{\partial V}\right)_{T}=0 \quad$ or $\quad G=H-T S=H-S\left(\frac{\partial H}{\partial S}\right)_{P}=0$
since $\left(\frac{\partial F}{\partial V}\right)_{T}=\frac{1}{V} F$ and $\left(\frac{\partial H}{\partial S}\right)_{P}=\frac{1}{S} H$.
(b) Since $P=-\left(\frac{\partial F}{\partial V}\right)_{T} \propto T^{4}$ does not depend on V, the isothermal curves are simply those with constant P. And since $S \propto V T^{3} \propto V P^{3 / 4}$, the isentropic curves are those with $V^{4} P^{3}=$ constant.
(c) $\operatorname{In} C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}$, we need changes of the temperature for constant pressure but, for the photon gas, P is a function of T only, and so T is constant when P is constant. Therefore, there is no meaningful C_{P} value.

2
(a) The single-particle energies are $\varepsilon_{j}=j \hbar \omega$ with $j=0$ for the ground state and $j=1,2,3, \ldots$ for the excited states. Accordingly, the expected number of bosons in the ground state and in the exited states are

$$
\left\langle N_{0}\right\rangle=\frac{z}{1-z}, \quad\left\langle N_{\mathrm{ex}}\right\rangle=\sum_{j=1}^{\infty} \frac{z}{\mathrm{e}^{\beta \varepsilon_{j}}-z}=\sum_{j=1}^{\infty} \frac{z}{\mathrm{e}^{j \beta \hbar \omega}-z} .
$$

(b) For low temperature, $\beta \hbar \omega \gg 1$, we have $\frac{z}{\mathrm{e}^{j \beta \hbar \omega}-z} \cong z \mathrm{e}^{-j \beta \hbar \omega}$ and only the $j=1$ term matters in the sum, so that

$$
\left\langle N_{\mathrm{ex}}\right\rangle \cong z \mathrm{e}^{-\beta \hbar \omega}=\frac{\left\langle N_{0}\right\rangle}{\left\langle N_{0}\right\rangle+1} \mathrm{e}^{-\beta \hbar \omega} .
$$

(c) The sum over j for $\left\langle N_{\mathrm{ex}}\right\rangle$ in (a) converges to a finite value for all positive temperatures and all values of the fugacity $z \leq 1$, including $z=1$. It follows that there is a maximum number of bosons than can be in the excited states for $T>0$.

3 We recall that an Ising chain with N particles, no on-site energy, and $N-1$ next-neighbor interaction links of strength J has a free energy of

$$
F=-k_{\mathrm{B}} T \log \left(2[2 \cosh (K)]^{N-1}\right)
$$

which is $F=-N k_{\mathrm{B}} T \log (2 \cosh (K))$ for $N \gg 1$, with $K=\beta J=J /\left(k_{\mathrm{B}} T\right)$.
(a) For $J^{\prime}=0$, we just have two Ising chains with $\frac{1}{2} N \gg 1$ particles each, so that

$$
F(T, J, 0)=2 \times\left[-\frac{1}{2} N k_{\mathrm{B}} T \log (2 \cosh (K))\right]=-N k_{\mathrm{B}} T \log (2 \cosh (K)) .
$$

(b) For $J=0$, we have $\frac{1}{2} N$ two-particle chains with one link each, so that

$$
F\left(T, 0, J^{\prime}\right)=\frac{1}{2} N \times\left[-k_{\mathrm{B}} T \log \left(4 \cosh \left(K^{\prime}\right)\right)\right]=-\frac{1}{2} N k_{\mathrm{B}} T \log \left(4 \cosh \left(K^{\prime}\right)\right)
$$

with $K^{\prime}=\beta J^{\prime}=J^{\prime} /\left(k_{\mathrm{B}} T\right)$.
(c) We have $F\left(T, J, J^{\prime}\right)=F(T, J, 0)+\left\langle E_{k}^{(1)}\right\rangle^{(0)}$ with ${ }^{(0)}$ referring to the $J^{\prime}=0$ situation of (a), and

$$
E_{k}^{(1)}=-J^{\prime} \sum_{j=1}^{\frac{1}{2} N} s_{1 j} s_{2 j}
$$

where $s_{1 j}$ is the s value for site j in chain 1 and $s_{2 j}$ is the s value for the partner site in chain 2. Since these values are uncorrelated and $\left\langle s_{j}\right\rangle=0$ for an Ising chain without on-site energy, we have $\left\langle s_{1 j} s_{2 j}\right\rangle^{(0)}=\left\langle s_{1 j}\right\rangle^{(0)}\left\langle s_{2 j}\right\rangle^{(0)}=0$ and so get

$$
F\left(T, J, J^{\prime}\right)=-N k_{\mathrm{B}} T \log (\cosh (K))+\mathcal{O}\left(J^{\prime 2}\right)
$$

There is no first-order term.
(a) In (4.1.9), we do not have the contribution from the electron-electron interaction and write $\frac{-Z e^{2}}{r_{0}}$ for the chemical potential μ. This gives

$$
\rho(r)=\frac{1}{3 \pi^{2}}\left[\frac{2 m}{\hbar^{2}}\left(\frac{Z e^{2}}{r}-\frac{Z e^{2}}{r_{0}}\right)\right]_{+}^{3 / 2}=\frac{1}{3 \pi^{2}}\left[\frac{2 Z}{a_{0} r_{0}}\left(\frac{r_{0}}{r}-1\right)\right]_{+}^{3 / 2}
$$

with $\frac{\hbar^{2}}{m}=e^{2} a_{0}$. Then, (4.6.1) reads

$$
\begin{aligned}
Z & =\frac{4 \pi}{3 \pi^{2}}\left(\frac{2 Z}{a_{0} r_{0}}\right)^{3 / 2} \int_{0}^{r_{0}} \mathrm{~d} r r^{2}\left(\frac{r_{0}}{r}-1\right)^{3 / 2} \\
& =\frac{4}{3 \pi}\left(2 Z \frac{r_{0}}{a_{0}}\right)^{\frac{3}{2}} \underbrace{\int_{0}^{1} \mathrm{~d} x x^{2}\left(\frac{1}{x}-1\right)^{\frac{3}{2}}}_{=\frac{\left(\frac{1}{2}\right)!\left(\frac{3}{2}\right)!}{3!}}=\frac{1}{12}\left(2 Z \frac{3 \pi}{4}\right.
\end{aligned}
$$

and thus gives $r_{0}=(18)^{1 / 3} Z^{-1 / 3} a_{0}$.
(b) For the kinetic energy we get

$$
\left.\begin{array}{rl}
E_{\mathrm{kin}} & =\int(\mathrm{d} \boldsymbol{r}) \frac{\hbar^{2}}{10 \pi^{2} m}\left[3 \pi^{2} \rho(r)\right]^{5 / 3} \\
& =\frac{4 \pi}{10 \pi^{2}} e^{2} a_{0}\left(\frac{2 Z}{a_{0} r_{0}}\right)^{\frac{5}{2}} r_{0}^{3} \underbrace{\int_{0}^{1} \mathrm{~d} x x^{2}\left(\frac{1}{x}-1\right)^{\frac{5}{2}}}_{0} \\
& =\frac{\left(-\frac{1}{2}\right)!\left(\frac{5}{2}\right)!}{3!}
\end{array}=\frac{1}{8} \frac{5 \pi}{2}\right)
$$

and the potential energy is

$$
\begin{aligned}
E_{\mathrm{pot}} & =-\int(\mathrm{d} \boldsymbol{r}) \frac{Z e^{2}}{r} \rho(r)=-\frac{4}{3 \pi} Z e^{2} r_{0}^{2}\left(\frac{2 Z}{a_{0} r_{0}}\right)^{\frac{3}{2}} \underbrace{\int_{0}^{1} \mathrm{~d} x x\left(\frac{1}{x}-1\right)^{\frac{3}{2}}} \\
& =-\frac{1}{2} \frac{Z e^{2}}{r_{0}} 12 Z=-6 Z^{2} \frac{e^{2}}{r_{0}}=-2 E_{\text {kin }},
\end{aligned} \quad=\frac{\left(-\frac{1}{2}\right)!\left(\frac{3}{2}\right)!}{2!}=\frac{1}{2} \frac{3 \pi}{4} .
$$

so that

$$
E=E_{\mathrm{kin}}+E_{\mathrm{pot}}=-E_{\mathrm{kin}}=-\left(\frac{3}{2}\right)^{1 / 3} Z^{7 / 3} \frac{e^{2}}{a_{0}} .
$$

(c) We have ? $=(3 / 2)^{1 / 3}>1>0.7687$ because we ignore the repulsive electron-electron interaction and, as a consequence, the binding energy is larger.

