Problem 1 (15 marks)

For a system that can be characterized by entropy S, volume V, and particle number N, show that

$$N\left(\frac{\partial\mu}{\partial V}\right)_{T,N} = V\left(\frac{\partial P}{\partial V}\right)_{T,N}$$

Problem 2 (**20**=10+10 marks)

The so-called Dieterici model of a real gas is specified by the equation of state

$$P(T,v) = \frac{RT}{v-b} \exp\left(-\frac{a}{vRT}\right)$$

with positive material constants a and b. Just like the van der Waals gas and the Berthelot gas, the Dieterici gas has a gas-to-liquid phase transition for temperatures below the critical temperature $T_{\rm cr}$.

- (a) Express the critical temperature $T_{\rm cr}$ and also the critical values of the molar volume $(v_{\rm cr})$ and the pressure $(P_{\rm cr})$ in terms of a, b, and the gas constant R. What is the value of $P_{\rm cr}v_{\rm cr}/T_{\rm cr}$?
- (b) Find the coexistence pressure P(T) for temperatures just below the critical temperature, $0 \leq T_{\rm cr} T \ll T_{\rm cr}$.

Problem 3 (**25**=10+15 marks)

We denote the energy and the particle number in the kth microstate by $E_k(V)$ and N_K , respectively. Then the partition functions for the canonical and grand canonical ensembles are

$$Q(\beta, V, N) = \sum_{k} e^{-\beta E_{k}} \delta_{N, N_{k}} \quad \text{and} \quad Z(\beta, V, z) = \sum_{k} e^{-\beta (E_{k} - \mu N_{k})}$$

with the fugacity $z = e^{\beta \mu}$,

(a) Show that these partition functions are related to each other by

$$Z(\beta, V, z) = \sum_{N=0}^{\infty} z^N Q(\beta, V, N) \,.$$

(b) For the single-component classical ideal gas, we have $\log Z(\beta, V, z) = V z/\lambda^3$ with the thermal de Broglie wavelength $\lambda = \hbar \sqrt{2\pi\beta/m}$. What is $Q(\beta, V, N)$?

Problem 4 (40=5+15+10+10 marks)

Consider an ideal classical gas of N particles with the energy

$$H(\boldsymbol{r}_1, \boldsymbol{p}_1; \boldsymbol{r}_2, \boldsymbol{p}_2; \ldots; \boldsymbol{r}_N, \boldsymbol{p}_N) = \sum_{j=1}^N \left[\frac{\boldsymbol{p}_j^2}{2m} + Fr_j \right],$$

where $r_j = |\mathbf{r}_j|$ is the length of the position vector of the *j*th particle and F > 0 is a force constant.

- (a) Is F an extensive or an intensive variable? Why?
- (b) Find the canonical partition function $Q(\beta, F, N)$.
- (c) Then determine the average energy per particle in units of $k_{\rm B}T$.
- (d) Determine also the average kinetic energy and the average potential energy and verify that their sum equals the average energy.

Here are some mathematical identities that could be useful:

$$\begin{split} &\int_{0}^{\infty} \mathrm{d}x \, x^{\nu} \mathrm{e}^{-ax} = 2 \int_{0}^{\infty} \mathrm{d}x \, x^{2\nu+1} \mathrm{e}^{-ax^{2}} = \frac{\nu!}{a^{\nu+1}} \quad \text{for } a > 0 \text{ and } \nu > -1 \,; \\ & \left(\frac{\mathrm{d}}{\mathrm{d}x} \right)^{j} x^{k} \Big|_{x=0} = \delta_{j,k} \, k! \quad \text{for } j, k = 0, 1, 2, 3, \ldots; \\ & 0! = 1 \,, \quad \left(-\frac{1}{2} \right)! = \sqrt{\pi} \,, \quad (\nu+1)! = \nu! \, (\nu+1) \,. \end{split}$$