Problem 1 (15 marks)

For a system that can be characterized by entropy S, volume V, and particle number N, show that

$$
N\left(\frac{\partial \mu}{\partial V}\right)_{T, N}=V\left(\frac{\partial P}{\partial V}\right)_{T, N}
$$

Problem 2 (20=10+10 marks)
The so-called Dieterici model of a real gas is specified by the equation of state

$$
P(T, v)=\frac{R T}{v-b} \exp \left(-\frac{a}{v R T}\right)
$$

with positive material constants a and b. Just like the van der Waals gas and the Berthelot gas, the Dieterici gas has a gas-to-liquid phase transition for temperatures below the critical temperature $T_{\text {cr }}$.
(a) Express the critical temperature $T_{\text {cr }}$ and also the critical values of the molar volume ($v_{\text {cr }}$) and the pressure $\left(P_{\text {cr }}\right)$ in terms of a, b, and the gas constant R. What is the value of $P_{\text {cr }} v_{\mathrm{cr}} / T_{\text {cr }}$?
(b) Find the coexistence pressure $P(T)$ for temperatures just below the critical temperature, $0 \lesssim T_{\text {cr }}-T \ll T_{\text {cr }}$.

Problem 3 (25=10+15 marks)
We denote the energy and the particle number in the k th microstate by $E_{k}(V)$ and N_{K}, respectively. Then the partition functions for the canonical and grand canonical ensembles are

$$
Q(\beta, V, N)=\sum_{k} \mathrm{e}^{-\beta E_{k}} \delta_{N, N_{k}} \quad \text { and } \quad Z(\beta, V, z)=\sum_{k} \mathrm{e}^{-\beta\left(E_{k}-\mu N_{k}\right)}
$$

with the fugacity $z=\mathrm{e}^{\beta \mu}$,
(a) Show that these partition functions are related to each other by

$$
Z(\beta, V, z)=\sum_{N=0}^{\infty} z^{N} Q(\beta, V, N)
$$

(b) For the single-component classical ideal gas, we have $\log Z(\beta, V, z)=V z / \lambda^{3}$ with the thermal de Broglie wavelength $\lambda=\hbar \sqrt{2 \pi \beta / m}$. What is $Q(\beta, V, N)$?

Problem 4 ($40=5+15+10+10$ marks)
Consider an ideal classical gas of N particles with the energy

$$
H\left(\boldsymbol{r}_{1}, \boldsymbol{p}_{1} ; \boldsymbol{r}_{2}, \boldsymbol{p}_{2} ; \ldots ; \boldsymbol{r}_{N}, \boldsymbol{p}_{N}\right)=\sum_{j=1}^{N}\left[\frac{\boldsymbol{p}_{j}^{2}}{2 m}+F r_{j}\right],
$$

where $r_{j}=\left|\boldsymbol{r}_{j}\right|$ is the length of the position vector of the j th particle and $F>0$ is a force constant.
(a) Is F an extensive or an intensive variable? Why?
(b) Find the canonical partition function $Q(\beta, F, N)$.
(c) Then determine the average energy per particle in units of $k_{\mathrm{B}} T$.
(d) Determine also the average kinetic energy and the average potential energy and verify that their sum equals the average energy.

Here are some mathematical identities that could be useful:

$$
\begin{aligned}
& \int_{0}^{\infty} \mathrm{d} x x^{\nu} \mathrm{e}^{-a x}=2 \int_{0}^{\infty} \mathrm{d} x x^{2 \nu+1} \mathrm{e}^{-a x^{2}}=\frac{\nu!}{a^{\nu+1}} \quad \text { for } a>0 \text { and } \nu>-1 \\
& \left.\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{j} x^{k}\right|_{x=0}=\delta_{j, k} k!\quad \text { for } j, k=0,1,2,3, \ldots \\
& 0!=1, \quad\left(-\frac{1}{2}\right)!=\sqrt{\pi}, \quad(\nu+1)!=\nu!(\nu+1)
\end{aligned}
$$

