In the Gibbs—Duhem relation 0 = SdT"— VdP + Ndu, we consider changes for
constant 7" and N, that is dT" — 0, dP — (dP)rn, and dpu — (dp)7n. Then
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See also (2.9.14)—(2.9.16) in the lecture notes.

(a) Below the critical temperature, there are molar volumes v for which
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This requires RT < %, so that tge critical temperature is Ti, = M and the
critical molar volume is v, = SRT. = 2b. For the critical pressure, we find
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Py = P(Te,ve) = 422 ~2. Together, they give T:: =2 2R.
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(b) We know that d; ) . = éT’U) _ Here, this gives
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Therefore, we have
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for temperatures just below the critical temperature.

(a) We have, quite simply,
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(b) Since
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we read off that Q(5,V,N) = N () :
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(a) F is intensive because it has the same value independent of the number of
particles.

(b) The canonical partition function is
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where [see Problem 3(b)]
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Accordingly, we have
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(c) We have, () =~ S log Q3. F.N) = — - = ST since Q x 572

(d) We note that the kinetic energy is inversely proportional to the mass m and the
potential energy is proportional to ', and Q(8, I, N) oc m3/2F~3N _ Therefore,

we have
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N<Ep0t> = _NiﬁaiFlogQ(67F7 N) = B = 3]€BT = 57 .

Clearly, (Eiin) + (Bpor) = (E).




