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(a) The equation of state says S
∂U

∂S
= αL

∂U

∂L
, which implies that U is a function

of SαL, and since S,L, n and U are extensive, we conclude that U(S,L, n) =
nf(SαL/nα+1).

(b) The analog is SdT + Ldτ + ndµ = 0 or dµ = −(S/n)dT − (L/n)dτ .

(c) From U = γ(S/n)αL, we find

T = αγsα−1` , τ = γsα , µ = −αγsα` ,

where s = S/n and ` = L/n, so that

µ(T, τ) = −T
(
τ

γ

)1/α

and dµ =
µ

T
dT +

µ

ατ
dτ .

In view of µ/T = −s and µ/(ατ) = −`, we have dµ = −sdT − `dτ , indeed.

2 The number of bosons that can be accommodated in excited states is

N −N0 =
A

(2πh̄)2
2π
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0

dp p
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=
A

λ2β
log

1

1− z
=

A

λ2β
g1(z) ,

where λβ = h̄
√

2πβ/m is the thermal wavelength and the fugacity z is from the range
0 < z < 1. Since g1(z) = − log(1− z)→∞ as z → 1, we can have any number of bosons
in the excited states and, therefore, there will not be an excess of bosons in the ground
state. It follows that there is no Bose-Einstein condensation here.

3

(a) Since ρβ is the extremal ρ, there is no contribution from the β-derivative of ρβ , so
that

S(β) = −∂F (β)

∂T
= kbβ

2∂F (β)

∂β
= −kbtr

{
ρβ log ρβ

}
.

(b) There is no change in ρβ and S(β), while F (β)→ F (β) + E0.



(c) Since ρβ|Ek〉 = |Ek〉〈Ek|ρβ|Ek〉 = |Ek〉pk, we have f(ρβ)|Ek〉 = |Ek〉f(pk) for
functions of ρβ and, therefore,

S(β) = −kb
∑
k

〈Ek|ρβ log ρβ|Ek〉 = −kb
∑
k

pk log pk ,

which is the Gibbs entropy formula if we regard the energy eigenstates as the
microstates of the quantum system.

4

(a) For J2 = 0, we have the standard Ising chain with N links of strength J1 and the
partition function as stated.

(b) For J1 = 0, we have (i) the standard Ising chain with 1
2N links of strength J2

together with (ii) a chain of 1
2N uncoupled sites. For (i) the partition function

is [2 cosh(K2)]
1
2
N and for (ii) is it 2

1
2
N . The product of these two contributions

gives the partition function as stated.

(c) We sum over sites of the type “2” in the 123 triangle, each sum producing a factor

∑
s2=±1

eK1(s1s2 + s2s3) +K2s1s3 = 2 cosh
(
(s1 + s3)K1

)
eK2s1s3 = g eK̃s1s3

with

g = 2 cosh(2K1)
1
2 and eK̃ = cosh(2K1)

1
2 eK2 .

This reduces the zigzag chain with N next-neighbor and 1
2N next-next-neighbor

links to a standard Ising chain with 1
2N next-neighbor links of strength K̃/β and

no next-next-neighbor links, thereby picking up a factor of g for each of the 1
2N

sites summed over. Accordingly,

Q(N,K1,K2) = g
1
2
NQ(12N, K̃, 0)

= 2
1
2
N cosh(2K1)

1
4
N 2

1
2
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1
2
N

or, with 2 cosh(K̃) = cosh(2K1)
1
2 eK2 + cosh(2K1)

− 1
2 e−K2 ,

Q(N,K1,K2) =
[
2 cosh(2K1)e

K2 + 2e−K2
] 1
2
N

= 2N
[
cosh(K1)

2 cosh(K2) + sinh(K1)
2 sinh(K2)

] 1
2
N

=
[
e2K1 +K2 + e−2K1 +K2 + 2e−K2

] 1
2
N
.

The particular cases of parts (a) and (b) are verified easily.



(d) For K1 = K2 = K this gives, as stated,

Q(N,K,K) =
(
e3K + 3e−K

) 1
2
N

= eNq(K)

with q(K) =
1

2
log
(
e3K + 3e−K

)
.

Then, the heat capacitance is

C = kbNK
2
(
∂

∂K

)2

q(K) = 24kbN

(
K

e2K + 3e−2K

)2

.


