(a) Since U, S, L, n are extensive variables, we have first

$$
U(\lambda S, \lambda L, \lambda n)=\lambda U(S, L, n) \quad \text { for } \quad \lambda>0
$$

and then

$$
\begin{aligned}
U(S, L, n) & =\left.\frac{\partial}{\partial \lambda} U(\lambda S, \lambda L, \lambda n)\right|_{\lambda=1} \\
& =S\left(\frac{\partial U}{\partial S}\right)_{L, n}+L\left(\frac{\partial U}{\partial L}\right)_{S, n}+n\left(\frac{\partial U}{\partial n}\right)_{S, L} \\
& =S T+L \tau+n \mu
\end{aligned}
$$

where T, τ, μ are functions of S, L, n.
(b) In terms of $U(S, L, n)$, the equation of state is the differential equation

$$
\left(S \frac{\partial}{\partial S}-3 L \frac{\partial}{\partial L}\right) U(S, L, n)=0
$$

which is solved by any function of $S^{3} L$. Proper scaling requires the form

$$
U(S, L, n)=n f\left(S^{3} L / n^{4}\right)
$$

with an undetermined function $f()$. We also know that

$$
\tau L^{1 / 2}=L^{1 / 2} \frac{\partial}{\partial L} U(S, L, n)=\frac{1}{2} \frac{\partial}{\partial \sqrt{L}} U(S, L, n)
$$

does not depend on L, which tells us that

$$
f\left(S^{3} L / n^{4}\right)=(\text { const }) \sqrt{S^{3} L / n^{4}}+\left(\text { const' }^{\prime}\right)
$$

We can put (const') $=0$ because this contribution to

$$
U(S, L, n)=(\text { const }) \sqrt{S^{3} L / n^{2}}+\left(\text { const }^{\prime}\right) n
$$

is of no thermodynamic consequence - it is just a fixed energy per rubber particle.
(c) For $U \propto \sqrt{S^{3} L / n^{2}}$, we have

$$
T S=S \frac{\partial U}{\partial S}=\frac{3}{2} U, \quad \tau L=L \frac{\partial U}{\partial L}=\frac{1}{2} U, \quad \mu n=n \frac{\partial U}{\partial n}=-U
$$

and

$$
T S+\tau L+\mu n=\left(\frac{3}{2}+\frac{1}{2}-1\right) U=U
$$

2

(a) For the critical values, the first and the second derivative of the right-hand side of the equation of state with respect to v must equal 0 . Except for the replacement $a \rightarrow a /\left(R T_{\text {cr }}\right)$, the pair of equations is the same as for the van der Waals gas. Therefore, we have

$$
v_{\text {cr }}=3 b \quad \text { and } \quad R T_{\text {cr }}=\frac{8}{27} \frac{a}{b R T_{\text {cr }}},
$$

so that

$$
R T_{\text {cr }}=\sqrt{\frac{8 a}{27 b}}=\frac{2}{3} \sqrt{\frac{2 a}{3 b}} \quad \text { and } \quad p_{\text {cr }}=\frac{1}{12 b} \sqrt{\frac{2 a}{3 b}}
$$

It follows that

$$
\frac{p_{\mathrm{cr}} v_{\mathrm{cr}}}{T_{\mathrm{cr}}}=\frac{3}{8} R .
$$

(b) With $p(T, v)$ given by the equation of state, we have

$$
\bar{p}(T)=p\left(T, v^{(1)}(T)\right)=p\left(T, v^{(2)}(T)\right)
$$

Accordingly,

$$
\frac{x p_{\text {cr }}}{T_{\text {cr }}}=\left.\frac{\mathrm{d} \bar{p}(T)}{\mathrm{d} T}\right|_{T=T_{\text {cr }}}=\left(\frac{\partial p}{\partial T}\right)_{v}\left(T_{\text {cr }}, v_{\text {cr }}\right)+\left(\frac{\partial p}{\partial v}\right)_{T}\left(T_{\text {cr }}, v_{\text {cr }}\right) \frac{\mathrm{d} v^{(1 \text { or } 2)}}{\mathrm{d} T}\left(T_{\text {cr }}\right),
$$

where the second term vanishes at the critical point, and the first term gives

$$
\frac{x p_{\text {cr }}}{T_{\text {cr }}}=\frac{R}{v_{\text {cr }}-b}+\frac{a R}{\left(v_{\text {cr }} R T_{\text {cr }}\right)^{2}}=\frac{R}{2 b}+\frac{3 R}{8 b}=\frac{7 R}{8 b} .
$$

Since $p_{\text {cr }} / T_{\text {cr }}=R /(8 b)$, we have $x=7$ and

$$
\bar{p}(T)=p_{\text {cr }}\left(7 \frac{T}{T_{\text {cr }}}-6\right) \quad \text { for } \quad T_{\text {cr }}-T \ll T_{\text {cr }} .
$$

3 For simplicity, we keep the common X dependence implicit, that is: $\Omega(E)$ stands for $\Omega(E, X), Q(\beta)$ stands for $Q(\beta, X)$, etc.
(a) We have $\beta F(\beta)=-\log Q(\beta), S=-\frac{\partial F}{\partial T}$, and $(U=) E=F+T S$. Therefore,

$$
\frac{S}{k_{\mathrm{B}}}=\log \Omega(E)=\beta E-\beta F=\beta E+\log Q(\beta) \quad \text { or } \quad \Omega(E)=Q(\beta) \mathrm{e}^{\beta E}
$$

with

$$
E=F-T \frac{\partial F}{\partial T}=E+\beta \frac{\partial F}{\partial \beta}=\frac{\partial(\beta F)}{\partial \beta}=-\frac{\partial \log Q(\beta)}{\partial \beta}=-\frac{1}{Q(\beta)} \frac{\partial Q(\beta)}{\partial \beta}
$$

or

$$
E Q(\beta)=-\frac{\partial Q(\beta)}{\partial \beta}
$$

(b) Now we have $S=k_{\mathrm{B}} \log \Omega(E), \beta=\frac{\partial\left(S / k_{\mathrm{B}}\right)}{\partial E}=\frac{\partial \log \Omega(E)}{\partial E}$, and

$$
\begin{aligned}
& \log Q(\beta)=-\beta F(\beta)=\beta(T S-E)=\log \Omega(E)-\beta E \\
\text { or } & Q(\beta)=\Omega(E) \mathrm{e}^{-\beta E}
\end{aligned}
$$

with E such that

$$
\beta=\frac{1}{\Omega(E)} \frac{\partial \Omega(E)}{\partial E} \quad \text { or } \quad \beta \Omega(E)=\frac{\partial \Omega(E)}{\partial E} .
$$

(a) Since

$$
\left\langle n_{j}\right\rangle=-\frac{1}{\beta} \frac{\partial}{\partial \varepsilon_{j}} \log Z=-\frac{1}{\beta Z} \frac{\partial Z}{\partial \varepsilon_{j}},
$$

we have

$$
\left\langle n_{j} n_{j^{\prime}}\right\rangle=\frac{1}{\beta^{2} Z} \frac{\partial}{\partial \varepsilon_{j}} \frac{\partial Z}{\partial \varepsilon_{j^{\prime}}}=-\frac{1}{\beta Z} \frac{\partial}{\partial \varepsilon_{j}}\left(\left\langle n_{j^{\prime}}\right\rangle Z\right)=-\frac{1}{\beta} \frac{\partial}{\partial \varepsilon_{j}}\left\langle n_{j^{\prime}}\right\rangle+\left\langle n_{j}\right\rangle\left\langle n_{j^{\prime}}\right\rangle,
$$

so that

$$
\begin{aligned}
\left\langle n_{j} n_{j^{\prime}}\right\rangle-\left\langle n_{j}\right\rangle\left\langle n_{j^{\prime}}\right\rangle & =-\frac{1}{\beta} \frac{\partial\left\langle n_{j^{\prime}}\right\rangle}{\partial \varepsilon_{j}}=-\delta_{j j^{\prime}} \frac{1}{\beta} \frac{\partial\left\langle n_{j}\right\rangle}{\partial \varepsilon_{j}}=\delta_{j j^{\prime}} \frac{\left\langle n_{j}\right\rangle^{2}}{\beta} \frac{\partial\left\langle n_{j}\right\rangle^{-1}}{\partial \varepsilon_{j}} \\
& =\delta_{j j^{\prime}} \frac{\left\langle n_{j}\right\rangle^{2}}{\beta} \beta \mathrm{e}^{\beta\left(\varepsilon_{j}-\mu\right)}=\delta_{j j^{\prime}}\left\langle n_{j}\right\rangle^{2}\left(\frac{1}{\left\langle n_{j}\right\rangle} \mp 1\right) \\
& =\delta_{j j^{\prime}}\left\langle n_{j}\right\rangle\left(1 \mp\left\langle n_{j}\right\rangle\right) .
\end{aligned}
$$

(b) We have

$$
\left\langle\delta N^{2}\right\rangle=\sum_{j, j^{\prime}}\left(\left\langle n_{j} n_{j^{\prime}}\right\rangle-\left\langle n_{j}\right\rangle\left\langle n_{j^{\prime}}\right\rangle\right)=\sum_{j}\left\langle n_{j}\right\rangle\left(1 \mp\left\langle n_{j}\right\rangle\right)=\langle N\rangle \mp \sum_{j}\left\langle n_{j}\right\rangle^{2},
$$

and said consistency follows from

$$
\begin{aligned}
\frac{\partial\langle N\rangle}{\partial(\beta \mu)} & =\sum_{j} \frac{\partial\left\langle n_{j}\right\rangle}{\partial(\beta \mu)}=-\sum_{j}\left\langle n_{j}\right\rangle^{2} \frac{\partial}{\partial(\beta \mu)} \mathrm{e}^{\beta \varepsilon_{j}-\beta \mu}=\sum_{j}\left\langle n_{j}\right\rangle^{2} \mathrm{e}^{\beta \varepsilon_{j}-\beta \mu} \\
& =\sum_{j}\left\langle n_{j}\right\rangle^{2}\left(\left\langle n_{j}\right\rangle^{-1} \mp 1\right)=\sum_{j}\left\langle n_{j}\right\rangle\left(1 \mp\left\langle n_{j}\right\rangle\right) .
\end{aligned}
$$

