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(a) Since U, S, L, n are extensive variables, we have first

U(λS, λL, λn) = λU(S, L, n) for λ > 0

and then

U(S, L, n) =
∂

∂λ
U(λS, λL, λn)
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)
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(
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+ n

(
∂U
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)
S,L

= ST + Lτ + nµ ,

where T, τ, µ are functions of S, L, n.

(b) In terms of U(S, L, n), the equation of state is the differential equation(
S
∂

∂S
− 3L

∂

∂L

)
U(S, L, n) = 0 ,

which is solved by any function of S3L. Proper scaling requires the form

U(S, L, n) = nf(S3L/n4)

with an undetermined function f( ). We also know that

τL1/2 = L1/2 ∂

∂L
U(S, L, n) =

1

2

∂

∂
√
L
U(S, L, n)

does not depend on L, which tells us that

f(S3L/n4) = (const)
√
S3L/n4 + (const’) .

We can put (const’) = 0 because this contribution to

U(S, L, n) = (const)
√
S3L/n2 + (const’)n

is of no thermodynamic consequence — it is just a fixed energy per rubber
particle.



(c) For U ∝
√
S3L/n2, we have

TS = S
∂U

∂S
=

3

2
U , τL = L
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=

1
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U , µn = n
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= −U ,

and

TS + τL+ µn =

(
3

2
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1

2
− 1

)
U = U .
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(a) For the critical values, the first and the second derivative of the right-hand
side of the equation of state with respect to v must equal 0. Except for the
replacement a→ a/(RTcr), the pair of equations is the same as for the van
der Waals gas. Therefore, we have

vcr = 3b and RTcr =
8

27

a

bRTcr
,

so that

RTcr =

√
8a

27b
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√
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and pcr =
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√
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.

It follows that
pcrvcr
Tcr

=
3

8
R .

(b) With p(T, v) given by the equation of state, we have

p(T ) = p
(
T, v(1)(T )

)
= p

(
T, v(2)(T )

)
.

Accordingly,

xpcr
Tcr

=
dp(T )

dT
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)
v
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(
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where the second term vanishes at the critical point, and the first term gives

xpcr
Tcr

=
R

vcr − b
+

aR

(vcrRTcr)2
=
R

2b
+

3R

8b
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.

Since pcr/Tcr = R/(8b), we have x = 7 and

p(T ) = pcr

(
7
T

Tcr
− 6

)
for Tcr − T � Tcr .



3 For simplicity, we keep the common X dependence implicit, that is: Ω(E) stands
for Ω(E,X), Q(β) stands for Q(β,X), etc.

(a) We have βF (β) = − logQ(β), S = −∂F
∂T

, and (U =)E = F + TS. There-

fore,

S

kB
= log Ω(E) = βE − βF = βE + logQ(β) or Ω(E) = Q(β)eβE

with

E = F − T ∂F
∂T

= E + β
∂F

∂β
=
∂(βF )

∂β
= −∂ logQ(β)

∂β
= − 1

Q(β)
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or

EQ(β) = −∂Q(β)

∂β
.

(b) Now we have S = kB log Ω(E), β =
∂(S/kB)

∂E
=
∂ log Ω(E)

∂E
, and

logQ(β) = −βF (β) = β(TS − E) = log Ω(E)− βE
or Q(β) = Ω(E)e−βE

with E such that

β =
1
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or βΩ(E) =
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.
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(a) Since
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we have
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so that
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(b) We have
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and said consistency follows from
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