Problem 1 ($35=10+10+15$ marks)
Isotropic harmonic oscillator: Point mass m moves in the force field $\boldsymbol{F}=-m \omega_{0}^{2} \boldsymbol{r}=$ $-\nabla \frac{1}{2} m \omega_{0}^{2} r^{2}$ with energy E and angular momentum $\boldsymbol{l} \neq 0$.
(a) By generalizing the familiar $x(t)$ of the one-dimensional harmonic oscillator, state $\boldsymbol{r}(t)$ for initial position $\boldsymbol{r}(t=0)=\boldsymbol{r}_{0}$ and initial velocity $\boldsymbol{v}(t=0)=\boldsymbol{v}_{0}$. Express E and \boldsymbol{l} in terms of \boldsymbol{r}_{0} and \boldsymbol{v}_{0}.
(b) Show that the dyadic $\mathbf{D}=\boldsymbol{v} \boldsymbol{v}+\omega_{0}^{2} \boldsymbol{r} \boldsymbol{r}$ does not depend on time.
(c) Consider $\left(\boldsymbol{l} \times \boldsymbol{r}_{0}\right) \cdot \boldsymbol{r}(t)$ and $\left(\boldsymbol{v}_{0} \times \boldsymbol{l}\right) \cdot \boldsymbol{r}(t)$ and use them to show that the plane orbit is an ellipse centered at $\boldsymbol{r}=0$. - Hint: $x(t), y(t)$ trace out a centered ellipse if $\left(\begin{array}{ll}x & y\end{array}\right) A\binom{x}{y}=1$ with a positive, symmetric 2×2 matrix A.

Problem 2 ($40=10+15+15$ marks)
Point mass m moves in the central-force field associated with the potential energy $V(r)$. The force is attractive, $V^{\prime}(r)>0$, and the motion is confined to the radial range $s_{1} \leq r \leq s_{2}$. As usual the bounds are determined by the energy E and the angular momentum l of the orbit.
(a) Circular orbits $\left(s_{1}=s_{2}\right)$ have (i) smallest energy for given angular momentum and (ii) largest angular momentum for given energy. Explain why this is so.
(b) For the potential energy $V(r)=-\frac{A}{r(a+r)^{2}}$ with constants $A>0$ and $a>0$, one can have bound orbits for $E=0$. For which values of $\kappa=|l| / m$ is this possible?
(c) Find the angular period of such an orbit with $E=0$.

Problem 3 ($25=15+10$ marks)
A projectile with mass m_{1} is scattered by a target of mass m_{2}, whereby a conservative line-of-sight force is acting. The target is at rest before the scattering. The scattering angle in the center-of-mass frame is denoted by θ, that in the laboratory frame by Θ.
(a) What is the range of possible Θ values when (i) $m_{1}<m_{2}$, (ii) $m_{1}=m_{2}$, (iii) $m_{1}>m_{2}$?
(b) If the differential cross section in the center-of-mass frame is $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=f(\theta)$, what is the differential cross section observed in the laboratory frame when $m_{1}=m_{2}$?

