(a) We have

$$
\boldsymbol{r}(t)=\boldsymbol{r}_{0} \cos \left(\omega_{0} t\right)+\frac{\boldsymbol{v}_{0}}{\omega_{0}} \sin \left(\omega_{0} t\right)
$$

as well as

$$
E=\frac{1}{2} m \boldsymbol{v}_{0}^{2}+\frac{1}{2} m \omega_{0}^{2} \boldsymbol{r}_{0}^{2} \quad \text { and } \quad \boldsymbol{l}=m \boldsymbol{r}_{0} \times \boldsymbol{v}_{0} .
$$

(b) With $\dot{\boldsymbol{v}}=-\omega_{0}^{2} \boldsymbol{r}$ and $\dot{\boldsymbol{r}}=\boldsymbol{v}$, the time derivative of \mathbf{D} is

$$
\begin{aligned}
\dot{\mathbf{D}} & =(\dot{\boldsymbol{v}} \boldsymbol{v}+\boldsymbol{v} \dot{\boldsymbol{v}})+\omega_{0}^{2}(\dot{\boldsymbol{r}} \boldsymbol{r}+\boldsymbol{r} \dot{\boldsymbol{r}}) \\
& =-\omega_{0}^{2}(\boldsymbol{r} \boldsymbol{v}+\boldsymbol{v} \boldsymbol{r})+\omega_{0}^{2}(\boldsymbol{v} \boldsymbol{r}+\boldsymbol{r} \boldsymbol{v})=0 .
\end{aligned}
$$

(c) Since

$$
\left(\boldsymbol{l} \times \boldsymbol{r}_{0}\right) \cdot \boldsymbol{r}(t)=\left(\boldsymbol{l} \times \boldsymbol{r}_{0}\right) \cdot \frac{\boldsymbol{v}_{0}}{\omega_{0}} \sin \left(\omega_{0} t\right)=\frac{1}{m \omega_{0}} \boldsymbol{l}^{2} \sin \left(\omega_{0} t\right)
$$

and

$$
\left(\boldsymbol{v}_{0} \times \boldsymbol{l}\right) \cdot \boldsymbol{r}(t)=\left(\boldsymbol{v}_{0} \times \boldsymbol{l}\right) \cdot \boldsymbol{r}_{0} \cos \left(\omega_{0} t\right)=\frac{1}{m} \boldsymbol{l}^{2} \cos \left(\omega_{0} t\right),
$$

we have

$$
\boldsymbol{r}(t) \cdot\left[\boldsymbol{a}_{1} \boldsymbol{a}_{1}+\boldsymbol{a}_{2} \boldsymbol{a}_{2}\right] \cdot \boldsymbol{r}(t)=1,
$$

where

$$
\boldsymbol{a}_{1}=\frac{m \omega_{0} \boldsymbol{l} \times \boldsymbol{r}_{0}}{\boldsymbol{l}^{2}} \quad \text { and } \quad \boldsymbol{a}_{2}=\frac{m \boldsymbol{v}_{0} \times \boldsymbol{l}}{\boldsymbol{l}^{2}}
$$

are non-parallel vectors in the plane of motion. If we choose that to be the $x y$ plane, then $\left(\begin{array}{ll}x & y\end{array}\right) A\binom{x}{y}=1$ with a positive, symmetric 2×2 matrix A.

2

(a) We have a circular orbit if E equals the minimum value of the effective potential energy $V_{\text {eff }}(s)=V(s)+\frac{m \kappa^{2}}{2 s^{2}}$, so this E is the smallest possible energy for the given κ. In return, larger κ values are not possible for this E, because then the minimum value of $V_{\text {eff }}(s)$ would be larger, too.
(b) Here, we have

$$
V_{\mathrm{eff}}(s)=-\frac{A}{s(a+s)^{2}}+\frac{m \kappa^{2}}{2 s^{2}}=\frac{1}{2 s^{2}(a+s)^{2}}\left[m \kappa^{2}(a+s)^{2}-2 A s\right]
$$

which is positive for sufficiently small distances s and for sufficiently large distances s. Therefore, orbits with $E=0$ are possible only if the minimum value of the factor $[\cdots]$ is negative. This is the case if

$$
\left.[\cdots]\right|_{m \kappa^{2}(s+a)=A}=2 A a-\frac{A^{2}}{m \kappa^{2}}<0 \quad \text { or } \quad \kappa^{2}<\frac{A}{2 m a} .
$$

(c) For

$$
V_{\mathrm{eff}}(s)=-\frac{m \kappa^{2}}{2 s^{2}(a+s)^{2}}\left(s_{2}-s\right)\left(s-s_{1}\right)
$$

with

$$
s_{s} s_{2}=a^{2} \quad \text { and } \quad s_{1}+s_{2}=\frac{2 A}{m \kappa^{2}}-2 a>2 a
$$

we get

$$
\begin{aligned}
\Phi & =2 \int_{s_{1}}^{s_{2}} \frac{\mathrm{~d} s}{s} \frac{\kappa}{\sqrt{-\frac{2}{m} s^{2} V_{\text {eff }}(s)}}=2 \int_{s_{1}}^{s_{2}} \frac{\mathrm{~d} s}{s} \frac{a+s}{\sqrt{\left(s_{2}-s\right)\left(s-s_{1}\right)}} \\
& =\frac{2 \pi a}{\sqrt{s_{1} s_{2}}}+2 \pi=4 \pi
\end{aligned}
$$

after using (5.3.21), (5.3.27), and (3.1.40).

3
(a) From Exercise 37, we know that

$$
\tan \Theta=\frac{\sin \theta}{m_{1} / m_{2}+\cos \theta} .
$$

(i) When $m_{1}<m_{2}$, the denominator vanishes when $\cos \theta=-m_{1} / m_{2}>-1$ and is negative for larger θ values. It follows that all values in the range $0 \leq \Theta \leq \pi$ are possible.
(ii) When $m_{1}=m_{2}$, we have $\tan \Theta=\tan \left(\frac{1}{2} \theta\right)$ or $\Theta=\frac{1}{2} \theta$, and all values in the range $0 \leq \Theta \leq \frac{1}{2} \pi$ are possible.
(iii) When $m_{1}>m_{2}$, the denominator is always positive, and $\frac{\mathrm{d}}{\mathrm{d} \theta} \tan \Theta=0$ when $m_{1} \cos \theta=-m_{2}$, so that the largest possible value for $\tan \Theta$ is $m_{2} / \sqrt{m_{1}^{2}-m_{2}^{2}}$, and the possible Θ values are from the range $0 \leq \Theta \leq \sin ^{-1}\left(m_{2} / m_{1}\right)<\frac{1}{2} \pi$.
(b) Corresponding cross sections are equal,

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} 2 \pi \mathrm{~d} \theta \sin \theta=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{lab}} 2 \pi \mathrm{~d} \Theta \sin \Theta
$$

so that

$$
\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{lab}}=\left.f(\theta) \frac{\sin \theta}{\sin \Theta} \frac{\mathrm{d} \theta}{\mathrm{~d} \Theta}\right|_{\theta=2 \Theta}=4 f(2 \Theta) \cos \Theta .
$$

