(a) On the way up, the weight and the frictional force are both downward; on the way down, the weight is downward but the frictional force is upward. Therefore, there is a larger net force between $t=0$ and $t=t_{1}$ than between $t=t_{1}$ and $t=t_{2}$, with a correspondingly larger acceleration. To cover the same distance, then, it takes a shorter time upwards than downwards.
(b) The differential equation

$$
\ddot{z}(t)=-g-\gamma \dot{z}(t)
$$

with $\dot{z}(t=0)=v_{0}$ and $z(t=0)=0$ is solved by

$$
\begin{aligned}
& \dot{z}(t)=-\frac{g}{\gamma}+\left(v_{0}+\frac{g}{\gamma}\right) \mathrm{e}^{-\gamma t} \\
& z(t)=-\frac{g t}{\gamma}+\left(v_{0}+\frac{g}{\gamma}\right) \frac{1-\mathrm{e}^{-\gamma t}}{\gamma} .
\end{aligned}
$$

From $\dot{z}\left(t_{1}\right)=0$ and $z\left(t_{2}\right)=0$, we get

$$
1+\frac{\gamma v_{0}}{g}=\mathrm{e}^{\gamma t_{1}}=\frac{\gamma t_{2}}{1-\mathrm{e}^{-\gamma t_{2}}}
$$

so that

$$
\mathrm{e}^{\gamma t_{1}}=\mathrm{e}^{\frac{1}{2} \gamma t_{2}} \frac{\frac{1}{2} \gamma t_{2}}{\sinh \left(\frac{1}{2} \gamma t_{2}\right)}<\mathrm{e}^{\frac{1}{2} \gamma t_{2}}
$$

and $t_{2}>2 t_{1}$ follows.
2
(a) $\quad a$ is a length, and F is a force.
(b) $\quad F a$ is an energy, and $\sqrt{m a / F}$ is a time.
(c) We have

$$
\sqrt{|x|+a}-\sqrt{a} \cong\left\{\begin{array}{lll}
\frac{1}{2} \sqrt{x^{2} / a} & \text { for } & |x| \ll a \\
\sqrt{|x|} & \text { for } & |x| \gg a
\end{array}\right.
$$

so that

$$
V(x) \cong\left\{\begin{array}{lll}
\frac{1}{4 a} F x^{2} & \text { for } & |x| \ll a \\
F|x| & \text { for } & |x| \gg a
\end{array}\right.
$$

(d) For $\frac{1}{2} m \omega^{2} x^{2}=\frac{1}{4 a} F x^{2}$ and $T=\frac{2 \pi}{\omega}$, we get

$$
T=2 \pi \sqrt{\frac{2 m a}{F}}
$$

(e) The turning points are at $x= \pm x_{1}$ with $E=V\left(x_{1}\right)$. Then

$$
T(E)=2 \int_{-x_{1}}^{x_{1}} \frac{\mathrm{~d} x}{\sqrt{\frac{2}{m}\left[V\left(x_{1}\right)-V(x)\right]}}=4 \int_{0}^{x_{1}} \frac{\mathrm{~d} x}{\sqrt{\frac{2}{m}\left[V\left(x_{1}\right)-V(x)\right]}}
$$

We substitute $x=\left(y^{2}+2 y\right) a, \mathrm{~d} x=\mathrm{d} y 2(y+1) a, V(x)=F a y^{2}, E=$ $V\left(x_{1}\right)=F a y_{1}^{2}$ and get

$$
T(E)=4 \int_{0}^{y_{1}} \frac{\mathrm{~d} y 2(y+1) a}{\sqrt{\frac{2}{m} F a\left(y_{1}^{2}-y^{2}\right)}}=4 \sqrt{\frac{2 m a}{F}} \int_{0}^{y_{1}} \frac{\mathrm{~d} y(y+1)}{\sqrt{y_{1}^{2}-y^{2}}}
$$

With

$$
\int_{0}^{y_{1}} \frac{\mathrm{~d} y y}{\sqrt{y_{1}^{2}-y^{2}}}=-\left.\sqrt{y_{1}^{2}-y^{2}}\right|_{y=0} ^{y_{1}}=y_{1}
$$

and

$$
\int_{0}^{y_{1}} \frac{\mathrm{~d} y}{\sqrt{y_{1}^{2}-y^{2}}}=\frac{1}{2} \pi
$$

this gives

$$
T(E)=\sqrt{\frac{2 m a}{F}}\left(4 \sqrt{\frac{E}{F a}}+2 \pi\right) .
$$

3
(a) Since

$$
\boldsymbol{\nabla} \times \boldsymbol{F} \widehat{=}\left(\begin{array}{c}
4 \lambda z \\
0 \\
0
\end{array}\right) \neq 0
$$

this force is not conservative.
(b) Since

$$
\boldsymbol{\nabla} \times \boldsymbol{F}=\boldsymbol{\nabla} \times\left(a^{2} \boldsymbol{r}-\boldsymbol{a} \boldsymbol{a} \cdot \boldsymbol{r}\right)=a^{2} \underbrace{\boldsymbol{\nabla} \times \boldsymbol{r}}_{=0}+\boldsymbol{a} \times \underbrace{\boldsymbol{\nabla}(\boldsymbol{a} \cdot \boldsymbol{r})}_{=\boldsymbol{a}}=0,
$$

this force is conservative, and the potential energy is

$$
V(\boldsymbol{r})=-\frac{1}{2} a^{2} r^{2}+\frac{1}{2}(\boldsymbol{a} \cdot \boldsymbol{r})^{2}=-\frac{1}{2}(\boldsymbol{a} \times \boldsymbol{r})^{2} .
$$

