1 The force

$$
F(x)=-V^{\prime}(x)=E_{0} \frac{2 a^{2} x\left(x^{2}-a^{2}\right)}{\left(x^{2}+a^{2}\right)^{3}}
$$

vanishes at $x=0$ and $x= \pm a$. At these positions, the potential energy equals $V(x=0)=0$ and $V(x= \pm a)=\frac{1}{4} E_{0}$, and the second derivative of $V(x)$ is

$$
V^{\prime \prime}(x=0)=-F^{\prime}(x=0)=\frac{2 E_{0}}{a^{2}} \quad \text { and } \quad V^{\prime \prime}(x= \pm a)=-F^{\prime}(x= \pm a)=-\frac{E_{0}}{2 a^{2}} .
$$

Therefore, we have

$$
V(x) \cong \begin{cases}\frac{E_{0} x^{2}}{a^{2}} & \text { for }|x| \ll a, \\ \frac{E_{0}\left(a^{2}-(x \mp a)^{2}\right)}{4 a^{2}} & \text { for }|x \mp a| \ll a .\end{cases}
$$

(a) We have the minimum of the potential energy at $x=0$ and maxima at $x= \pm a$. It follows (i) that the energy cannot be negative; (ii) that there is motion with no turning points for $E>\frac{1}{4} E_{0}$; (iii) that, for $0<E<\frac{1}{4} E_{0}$, there is motion with two turning points if the initial position is between $x=-a$ and $x=a$, and motion with one turning point otherwise.
(b) We have small-amplitude oscillations near $x=0$, where $V(x) \cong \frac{1}{2} m \omega_{0}^{2} x^{2}$ with $\omega_{0}=\sqrt{2 E_{0} /\left(m a^{2}\right)}$, so that

$$
T_{0}=\frac{2 \pi}{\omega_{0}}=\frac{2 \pi a}{\sqrt{2 E_{0} / m}}
$$

is their period.
(c) When $E_{0}=-\left|E_{0}\right|<0$, the potential energy has its maximum at $x=0$ and two symmetric minima at $x= \pm a$. Then there is (i) motion with no turning point for $E>0$, and (ii) motion with two turning points for $\frac{1}{4} E_{0}<E<0$. We have small-amplitude oscillations near $x=a$ and $x=-a$ with the same period $T_{1}=2 \pi / \omega_{1}$ with ω_{1} given by $V(x) \cong \frac{E_{0}}{4 a^{2}}+\frac{1}{2} m \omega_{1}^{2}(x \mp a)^{2}$, so that $\omega_{1}^{2}=-E_{0} /\left(2 m a^{2}\right)$ and

$$
T_{1}=\frac{4 \pi a}{\sqrt{2\left|E_{0}\right| / m}}
$$

is the corresponding period.
(a) At the perihelion we have $s=(1-\epsilon) a, \dot{s}=0$, and $\dot{\varphi}=\kappa / s^{2}$ as always, so that

$$
E=\frac{m}{2}\left(\dot{s}^{2}+(s \dot{\varphi})^{2}\right)-\frac{G m_{\odot} m}{s}=\frac{m \kappa^{2}}{2(1-\epsilon)^{2} a^{2}}-\frac{G m_{\odot} m}{(1-\epsilon) a} .
$$

(b) The virial theorem of Exercises 31-33 applies here for $n=-1$, so that

$$
\overline{E_{\mathrm{kin}}}=-E \quad \text { and } \quad \overline{E_{\mathrm{pot}}}=2 E .
$$

(c) With $\mathrm{d} t=\mathrm{d} \varphi s^{2} / \kappa$, we have

$$
\begin{aligned}
\overline{E_{\mathrm{pot}}} & =\frac{1}{T} \int_{0}^{T} \mathrm{~d} t \frac{-G m_{\odot} m}{s}=-\frac{G m_{\odot} m}{\kappa T} \int_{0}^{2 \pi} \mathrm{~d} \varphi s(\varphi) \\
& =-\frac{G m_{\odot} m}{\kappa T} \int_{0}^{2 \pi} \mathrm{~d} \varphi \frac{\left(1-\epsilon^{2}\right) a}{1+\epsilon \cos \varphi}=-\frac{G m_{\odot} m}{\kappa T} 2 \pi a \sqrt{1-\epsilon^{2}} \\
& =-\frac{G m_{\odot} m}{a}
\end{aligned}
$$

(d) We equate $2 E$ from (a) with $\overline{E_{\text {pot }}}$ from (c), and solve for $G m_{\odot}$. This gives

$$
G m_{\odot}=\frac{\kappa^{2}}{\left(1-\epsilon^{2}\right) a}=\left(\frac{2 \pi}{T}\right)^{2} a^{3}\left(\frac{\kappa T}{2 \pi \sqrt{1-\epsilon^{2}} a^{2}}\right)^{2}=\left(\frac{2 \pi}{T}\right)^{2} a^{3}
$$

which is Kepler's Third Law.
3
(a) When $|\boldsymbol{v}| \ll c$, we have $\sqrt{c^{2}-\boldsymbol{v}^{2}}=c-\frac{1}{2 c} \boldsymbol{v}^{2}$, so that

$$
L=m c^{2}-m c\left(c-\frac{1}{2 c} \boldsymbol{v}^{2}\right)-V(\boldsymbol{r})=\frac{1}{2} m \boldsymbol{v}^{2}-V(\boldsymbol{r}),
$$

as it should be.
(b) The momentum is related to the velocity by

$$
\boldsymbol{p}=\boldsymbol{\nabla}_{\boldsymbol{v}} L=\frac{m c \boldsymbol{v}}{\sqrt{c^{2}-\boldsymbol{v}^{2}}}
$$

We square this to establish first

$$
c^{2}-\boldsymbol{v}^{2}=\frac{\left(m c^{2}\right)^{2}}{(m c)^{2}+\boldsymbol{p}^{2}}
$$

and then

$$
\boldsymbol{v}=\frac{c \boldsymbol{p}}{\sqrt{(m c)^{2}+\boldsymbol{p}^{2}}} .
$$

It follows that the Hamilton function is

$$
H=\left.(\boldsymbol{p} \cdot \boldsymbol{v}-L)\right|_{\boldsymbol{v}=(\text { as above })}=c \sqrt{(m c)^{2}+\boldsymbol{p}^{2}}-m c^{2}+V(\boldsymbol{r})
$$

4 The top mass has these coordinates and velocity components:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=R(\phi+\sin \phi, 1-\cos \phi) \\
& \left(\dot{x}_{1}, \dot{y}_{1}\right)=R \dot{\phi}(1+\cos \phi, \sin \phi)
\end{aligned}
$$

and for the bottom mass we have

$$
\begin{aligned}
& \left(x_{2}, y_{2}\right)=\left(x_{1}, y_{1}\right)+3 R(\sin \theta,-\cos \theta) \\
& \left(\dot{x}_{2}, \dot{y}_{2}\right)=\left(\dot{x}_{1}, \dot{y}_{1}\right)+3 R \dot{\theta}(\cos \theta, \sin \theta) .
\end{aligned}
$$

(a) In the Lagrange function $L=E_{\text {kin }}-E_{\mathrm{pot}}$, we have the kinetic energy

$$
\begin{aligned}
E_{\text {kin }} & =\frac{m}{2}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}+\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right) \\
& =2 m R^{2} \dot{\phi}^{2}(1+\cos \phi)+3 m R^{2} \dot{\phi} \dot{\theta}(\cos \theta+\cos (\phi-\theta))+\frac{9}{2} m R^{2} \dot{\theta}^{2}
\end{aligned}
$$

and the potential energy

$$
E_{\mathrm{pot}}=m g y_{1}+m g\left(y_{2}+3 R\right)=m g R(5-2 \cos \phi-3 \cos \theta),
$$

where we recognize that $y_{1}=0, y_{2}=-3 R$ at equilibrium and choose to set $E_{\text {pot }}=0$ there.
(b) Near this equilibrium we have

$$
\begin{aligned}
& E_{\mathrm{kin}}=4 m R^{2} \dot{\phi}^{2}+6 m R^{2} \dot{\phi} \dot{\theta}+\frac{9}{2} m R^{2} \dot{\theta}^{2} \\
& E_{\mathrm{pot}}=m g R\left(\phi^{2}+\frac{3}{2} \theta^{2}\right)
\end{aligned}
$$

which give

$$
L=\frac{1}{2}(\dot{\phi} \dot{\theta}) M\binom{\dot{\phi}}{\dot{\theta}}-\frac{1}{2}(\phi \theta) K\binom{\phi}{\theta}
$$

with

$$
M=m R^{2}\left(\begin{array}{ll}
8 & 6 \\
6 & 9
\end{array}\right) \quad \text { and } \quad K=m g R\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) .
$$

(c) After putting the common factor $m R$ aside, the frequencies of the normal modes are determined by

$$
\operatorname{det}\left\{\left(\begin{array}{cc}
8 R \omega^{2}-2 g & 6 R \omega^{2} \\
6 R \omega^{2} & 9 R \omega^{2}-3 g
\end{array}\right)\right\}=36\left(R \omega^{2}\right)^{2}-42 g R \omega^{2}+6 g^{2}=0
$$

or

$$
\left(R \omega^{2}-g\right)\left(6 R \omega^{2}-g\right)=0
$$

so that the normal frequencies are $\omega_{1}=\sqrt{g / R}$ and $\omega_{2}=\sqrt{g /(6 R)}$. The corresponding normal coordinates follow from

$$
\left(\begin{array}{cc}
8 R \omega^{2}-2 g & 6 R \omega^{2} \\
6 R \omega^{2} & 9 R \omega^{2}-3 g
\end{array}\right)_{R \omega^{2}=g}\binom{\phi_{1}}{\theta_{1}}=0 \quad \text { or } \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{\phi_{1}}{\theta_{1}}=0
$$

and

$$
\left(\begin{array}{cc}
8 R \omega^{2}-2 g & 6 R \omega^{2} \\
6 R \omega^{2} & 9 R \omega^{2}-3 g
\end{array}\right)_{R \omega^{2}=g / 6}\binom{\phi_{2}}{\theta_{2}}=0 \quad \text { or } \quad\left(\begin{array}{cc}
-4 & 6 \\
6 & -9
\end{array}\right)\binom{\phi_{2}}{\theta_{2}}=0
$$

Accordingly, we can choose $\binom{\phi_{1}}{\theta_{1}}=\binom{1}{-1}$ and $\binom{\phi_{2}}{\theta_{2}}=\binom{3}{2}$.
A small-amplitude oscillation in the fast normal mode $\left(\omega=\omega_{1}\right)$ is of the form

$$
\binom{x_{1}}{x_{2}}=\left.\binom{2 R \phi}{2 R \phi+3 R \theta}\right|_{\phi=-\theta=\epsilon_{1}}=\binom{2 R \epsilon_{1}}{-R \epsilon_{1}}
$$

and $\left(y_{1}, y_{2}\right)=(0,-3 R)$, where $\epsilon_{1}(t)=a_{1} \cos \left(\omega_{1} t-\varphi_{1}\right)$ with some small amplitude a_{1} and some phase φ_{1}. The two masses are displaced to opposite sides, whereby the top mass is oscillating with twice the amplitude of the bottom mass.

Likewise, a small-amplitude oscillation in the slow normal mode $\left(\omega=\omega_{2}\right)$ is of the form

$$
\binom{x_{1}}{x_{2}}=\left.\binom{2 R \phi}{2 R \phi+3 R \theta}\right|_{2 \phi=3 \theta=\epsilon_{2}}=\binom{R \epsilon_{2}}{2 R \epsilon_{2}}
$$

and $\left(y_{1}, y_{2}\right)=(0,-3 R)$, where with $\epsilon_{2}(t)=a_{2} \cos \left(\omega_{2} t-\varphi_{2}\right)$ with some small amplitude a_{2} and some phase φ_{2}. The two masses are displaced to the same side, whereby the top mass is oscillating with half the amplitude of the bottom mass.

