1

According to Kepler's Second Law, the time that the planet needs to cover the aphelion-side half of the ellipse is proportional to the area composed of the left half of the ellipse and the triangle. The time spent on the perihelion-side half of the ellipse is proportional to the area of the right half of the ellipse with the triangle removed.

The ellipse has area $\pi a b$, the triangle has area $\epsilon a b$. Therefore, it takes the fraction $\frac{\frac{1}{2} \pi a b-\epsilon a b}{\pi a b}=\frac{1}{2}-\frac{\epsilon}{\pi}$ of the round-trip time to cover the perihelion-side half of the ellipse, and it takes the fraction $\frac{1}{2}+\frac{\epsilon}{\pi}$ to cover the aphelion-side half.

2

(a) When entering the ray is deflected by angle $\alpha-\beta$, and again by the same amount when exiting. Therefore, we have $\frac{1}{2} \theta=\alpha-\beta$ with $\sin \alpha=b / R=$ \sqrt{x} and $\sin \beta=\frac{3}{4} \sqrt{x}$, so that

$$
y=\cos \left(\frac{1}{2} \theta\right)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=\sqrt{1-x} \sqrt{1-\frac{9 x}{16}}+\frac{3 x}{4} .
$$

We have $y \cong 1-\frac{x}{32}$ for $0 \lesssim x \ll 1$ and $y=\frac{3}{4}$ for $x=1$; in view of the $\sqrt{1-x}$ factor, the slope $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is infinite at $x=1$. Here is the graph of $y(x)$:

(b) With $b^{2}=R^{2} x$ and $\cos \theta=2 \cos \left(\frac{1}{2} \theta\right)^{2}-1=2 y^{2}-1$ we have $\mathrm{d} b^{2}=R^{2} \mathrm{~d} x$ and $\mathrm{d} \cos \theta=4 y \mathrm{~d} y$, so that

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{2}\left|\frac{\mathrm{~d} b^{2}}{\mathrm{~d} \cos \theta}\right|=\frac{R^{2}}{8 y}\left|\frac{\mathrm{~d} x}{\mathrm{~d} y}\right|=-\frac{R^{2}}{8 y} \frac{\mathrm{~d} x}{\mathrm{~d} y},
$$

where we recognize that $\frac{\mathrm{d} x}{\mathrm{~d} y}<0$. We express x as a function of y,

$$
x=16 \frac{1-y^{2}}{25-24 y}
$$

and differentiate to arrive at

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{4(4 y-3)(4-3 y)}{y(25-24 y)^{2}} R^{2} \quad \text { with } \quad \frac{3}{4} \leq y=\cos \frac{\theta}{2} \leq 1
$$

(c) With $\mathrm{d} \Omega=\mathrm{d} \phi \sin \theta \mathrm{d} \theta=-\mathrm{d} \phi \mathrm{d} \cos \theta=-\mathrm{d} \phi 4 y \mathrm{~d} y$, we have

$$
\begin{aligned}
\sigma & =\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi} \mathrm{d} \theta \sin \theta \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{3 / 4}^{1} \mathrm{~d} y 4 y \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \\
& =\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{3 / 4}^{1} \mathrm{~d} y 4 y \frac{R^{2}}{8 y}\left(-\frac{\mathrm{d} x}{\mathrm{~d} y}\right)=\left.2 \pi \frac{R^{2}}{2}(-x)\right|_{y=3 / 4} ^{1}=\pi R^{2}
\end{aligned}
$$

As expected, the total cross section is the cross-sectional area of the water drop.

3

(a) We choose the coordinate system such that $r=0$ is the position of the center-of-mass, so that $\boldsymbol{r}_{1}=-\frac{1}{2} \boldsymbol{a}$ and $\boldsymbol{r}_{2}=\frac{1}{2} \boldsymbol{a}$. According to Newton's Shell Theorem, we then have the gravitational potential

$$
-\frac{\frac{1}{2} G M}{\left|\boldsymbol{r}+\frac{1}{2} \boldsymbol{a}\right|}-\frac{\frac{1}{2} G M}{\left|\boldsymbol{r}-\frac{1}{2} \boldsymbol{a}\right|}=-G \int\left(\mathrm{~d} \boldsymbol{r}^{\prime}\right) \frac{\frac{1}{2} M \delta\left(\boldsymbol{r}^{\prime}+\frac{1}{2} \boldsymbol{a}\right)+\frac{1}{2} M \delta\left(\boldsymbol{r}^{\prime}-\frac{1}{2} \boldsymbol{a}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|}
$$

for points r outside the two balls. It is as if we had two point masses $\frac{1}{2} M$ at $\pm \frac{1}{2} \boldsymbol{a}$, with the as-if mass density

$$
\rho\left(\boldsymbol{r}^{\prime}\right)=\frac{1}{2} M \delta\left(\boldsymbol{r}^{\prime}+\frac{1}{2} \boldsymbol{a}\right)+\frac{1}{2} M \delta\left(\boldsymbol{r}^{\prime}-\frac{1}{2} \boldsymbol{a}\right) .
$$

The resulting quadrupole moment dyadic is

$$
\begin{aligned}
\mathbf{Q} & =\int\left(\mathrm{d} \boldsymbol{r}^{\prime}\right) \rho\left(\boldsymbol{r}^{\prime}\right)\left(3 \boldsymbol{r}^{\prime} \boldsymbol{r}^{\prime}-{r^{\prime}}^{2} \mathbf{1}\right) \\
& =2 \times \frac{1}{2} M\left(3\left(\frac{1}{2} \boldsymbol{a}\right)\left(\frac{1}{2} \boldsymbol{a}\right)-\left(\frac{1}{2} \boldsymbol{a}\right)^{2} \mathbf{1}\right)=\frac{1}{4} M\left(3 \boldsymbol{a} \boldsymbol{a}-a^{2} \mathbf{1}\right) .
\end{aligned}
$$

(b) At time $t=0$, each ball is at distance $s(0)=\frac{1}{2} a$ from the center-of-mass that is half-way between the balls. At time $t=T$, the balls touch so that each ball is at distance $s(T)=R$ from the center-of-mass. Each ball is accelerated by the force $G\left(\frac{1}{2} M\right)^{2} /(2 s)^{2}$ toward the center-of-mass, so that

$$
\frac{1}{2} M \ddot{s}=-\frac{G M^{2}}{16 s^{2}} \quad \text { or } \quad \ddot{s}=\frac{\partial}{\partial s} \frac{G M}{8 s} .
$$

It follows that

$$
\dot{s}^{2}-\frac{G M}{4 s}=-\frac{G M}{2 a}=\text { constant }
$$

with the value of this constant determined by $s(0)=\frac{1}{2} a$ and $\dot{s}(0)=0$. Since $\dot{s}(t)<0$ for $t>0$, we have

$$
\dot{s}=\frac{\mathrm{d} s}{\mathrm{~d} t}=-\sqrt{\frac{G M}{2 a}} \sqrt{\frac{a / 2-s}{s}}
$$

and

$$
T=\int_{0}^{T} \mathrm{~d} t=\sqrt{\frac{2 a}{G M}} \int_{R}^{a / 2} \mathrm{~d} s \sqrt{\frac{s}{a / 2-s}}=\sqrt{\frac{a^{3} / 2}{G M}} \int_{2 R / a}^{1} \mathrm{~d} x \sqrt{\frac{x}{1-x}}
$$

For $a \gg R$, the x integral gives $\frac{1}{2} \pi$, and $T \simeq \pi \sqrt{\frac{(a / 2)^{3}}{G M}}$ follows.

4 Along the path specified by $y(x)$, it takes time $T[y]=\int_{0}^{a} \mathrm{~d} x \sqrt{\frac{1+y^{\prime}(x)^{2}}{2 g y(x)}}$ to cover the path-length $S[y]=\int_{0}^{a} \mathrm{~d} x \sqrt{1+y^{\prime}(x)^{2}}$, and the average speed is $S[y] / T[y]$.
(a) For the straight-line path, we have $y(x)=b x / a$, which gives $S=\sqrt{a^{2}+b^{2}}$ and $T=\sqrt{a^{2}+b^{2}} \sqrt{2 /(g b)}$; the average speed is $\sqrt{\frac{1}{2} g b}=\sqrt{g R} \sin \frac{\phi_{0}}{2}$.
For the brachistochrone, we have $(\mathrm{d} x)^{2}+(\mathrm{d} y)^{2}=2 R y(\mathrm{~d} \phi)^{2}=$ $\left(2 R \sin \frac{\phi}{2}\right)^{2}(\mathrm{~d} \phi)^{2}$, so that

$$
S=\int_{0}^{\phi_{0}} \mathrm{~d} \phi 2 R \sin \frac{\phi}{2}=4 R\left(1-\cos \frac{\phi_{0}}{2}\right)=8 R\left(\sin \frac{\phi_{0}}{4}\right)^{2}
$$

is the path-length and

$$
T=\int_{0}^{\phi_{0}} \mathrm{~d} \phi \sqrt{\frac{2 R y}{2 g y}}=\sqrt{\frac{R}{g}} \phi_{0}
$$

is the travel time; the average speed is $\sqrt{g R} \frac{8}{\phi_{0}}\left(\sin \frac{\phi_{0}}{4}\right)^{2}$.
The ratio of the two average speeds is

$$
\frac{\text { brachistochrone }}{\text { straight line }}=\frac{\frac{8}{\phi_{0}}\left(\sin \frac{\phi_{0}}{4}\right)^{2}}{2 \sin \frac{\phi_{0}}{4} \cos \frac{\phi_{0}}{4}}=\frac{\tan \left(\phi_{0} / 4\right)}{\phi_{0} / 4}>1
$$

since $0<\frac{1}{4} \phi_{0}<\frac{1}{2} \pi$.
(b) As observed in (a), the average speed along a straight-line path with height difference B is $\sqrt{\frac{1}{2} g B}$ if the speed is zero at the upper end, and it will be larger than that if the speed at the upper end is nonzero. We can choose a path that goes on a straight line from $(0,0)$ to an intermediate point $\left(a^{\prime}, B\right)$ with $B>b$ and then on another straight line to (a, b), and so get an average speed of $\sqrt{\frac{1}{2} g B}$ or more. Since B can be as large as we like, the average speed can exceed any bound. Conclusion: There is no path for which the average speed is largest.

