(a) The potential energy $m a|x|$ gives rise to the force $F=-m a \frac{\partial}{\partial x}|x|=$ $-m a \operatorname{sgn}(x)$; it follows that the stated energy is the correct conserved energy for the given force.
(b) We have motion with constant acceleration $-a$ for $x>0$ and constant acceleration a for $x<0$. Let's take $x=0$ and $\dot{x}=v_{0}>0$ at $t=0$, then $E=\frac{1}{2} m v_{0}^{2}$ and $\dot{x}=v_{0}$-at for the half-period $0<t<\frac{1}{2} T$ of the motion, and either $\dot{x}(t=T / 4)=0$ or $\dot{x}(t=T / 2)=-v_{0}$ tell us that $a T=4 v_{0}$. Accordingly, the period is $T(E)=\frac{4}{a} \sqrt{2 E / m}$. - This answer is also available as the $\nu=1$ case of Exercise 24 with $\kappa=m a$.
(c) Since $\overline{E_{\text {kin }}}+\overline{E_{\text {pot }}}=E$, it is enough to calculate $\overline{E_{\text {kin }}}$, and averaging over the quarter-period $0<t<T / 4$ is as good as averaging over the full period. Thus,

$$
\overline{E_{\text {kin }}}=\frac{4}{T} \int_{0}^{T / 4} \mathrm{~d} t \frac{m}{2}\left(v_{0}-a t\right)^{2}=\frac{4}{T} \frac{m}{2} \frac{v_{0}^{3}}{3 a}=\frac{2}{3} \frac{m v_{0}^{2}}{a T / v_{0}}=\frac{2}{3} \frac{2 E}{4}=\frac{1}{3} E
$$

and $\overline{E_{\mathrm{pot}}}=\frac{2}{3} E$.
2 The solution to the equation of motion is given in (2.2.19) on page 41 of the lecture notes, that is

$$
\boldsymbol{r}(t)=\boldsymbol{r}_{0}+\boldsymbol{v}_{\infty} t+\left(\boldsymbol{v}_{0}-\boldsymbol{v}_{\infty}\right) \frac{1-\mathrm{e}^{-\gamma t}}{\gamma}
$$

with $\boldsymbol{v}_{\infty}=\boldsymbol{g} / \gamma$, and $\boldsymbol{r}(T)=0$ establishes

$$
\boldsymbol{r}_{0}=-\boldsymbol{v}_{\infty} T-\left(\boldsymbol{v}_{0}-\boldsymbol{v}_{\infty}\right) \frac{1-\mathrm{e}^{-\gamma T}}{\gamma}
$$

so that

$$
\begin{aligned}
\boldsymbol{r}(t) & =\boldsymbol{v}_{\infty}(t-T)+\left(\boldsymbol{v}_{0}-\boldsymbol{v}_{\infty}\right) \frac{\mathrm{e}^{-\gamma T}-\mathrm{e}^{-\gamma t}}{\gamma} \\
& =\boldsymbol{g} \frac{t-T}{\gamma}+\left(\boldsymbol{v}_{0}-\frac{1}{\gamma} \boldsymbol{g}\right) \frac{\mathrm{e}^{-\gamma T}-\mathrm{e}^{-\gamma t}}{\gamma} .
\end{aligned}
$$

An alternative solution could begin with the result of Exercise 18 and apply it to the current situation.

3 The force

$$
F(x)=-\frac{\partial}{\partial x} V(x)=E_{0} a^{2} \frac{2 x(x-2 a)(x+2 a)}{\left(x^{2}+2 a^{2}\right)^{3}}
$$

vanishes at $x=0, x=2 a$, and $x=-2 a$. At these positions, the potential energy has the values

$$
V(0)=E_{0} a^{2} \frac{-a^{2}}{\left(2 a^{2}\right)^{2}}=--\frac{1}{4} E_{0}, \quad V(\pm 2 a)=E_{0} a^{2} \frac{(2 a)^{2}-a^{2}}{\left[(2 a)^{2}+2 a^{2}\right]^{2}}=\frac{1}{12} E_{0}
$$

and we note that $V(x \rightarrow \pm \infty)=0$. Near the points of vanishing force, the force is approximated by

$$
\begin{gathered}
x \simeq 0: F(x) \simeq E_{0} a^{2} \frac{2 x(-2 a)(+2 a)}{\left(2 a^{2}\right)^{3}}=-\frac{E_{0}}{a^{2}} x, \\
x \simeq 2 a: F(x) \simeq E_{0} a^{2} \frac{4 a(x-2 a)(2 a+2 a)}{\left((2 a)^{2}+2 a^{2}\right)^{3}}=\frac{2}{27} \frac{E_{0}}{a^{2}}(x-2 a), \\
x \simeq-2 a: F(x) \simeq E_{0} a^{2} \frac{-4 a(-2 a-2 a)(x+2 a)}{\left((-2 a)^{2}+2 a^{2}\right)^{3}}=\frac{2}{27} \frac{E_{0}}{a^{2}}(x+2 a),
\end{gathered}
$$

so that

$$
F^{\prime}(x)=-\frac{\partial^{2}}{\partial x^{2}} V(x)=\left\{\begin{aligned}
-\frac{E_{0}}{a^{2}} & \text { for } \quad x=0 \\
\frac{2}{27} \frac{E_{0}}{a^{2}} & \text { for } \quad x= \pm 2 a
\end{aligned}\right.
$$

(a) We have the potential minimum at $x=0$ and maxima at $x= \pm 2 a$. There is no motion with $E<-\frac{1}{4} E_{0}$, and we have

$$
\begin{aligned}
& -\frac{1}{4} E_{0}<E<0: 2 \text { turning points, } \\
& 0<E<\frac{1}{12} E_{0}: 2 \text { turning points or } 1 \text { turning point, } \\
& \frac{1}{12} E_{0}<E: \text { no turning points. }
\end{aligned}
$$

(b) Near $x=0$, the force is $F(x)=-m \omega^{2} x$ with $\omega^{2}=E_{0} /\left(m a^{2}\right)$, so that we have the period

$$
\frac{2 \pi}{\omega}=\frac{2 \pi a}{\sqrt{E_{0} / m}}
$$

(c) For $E_{0}=-\left|E_{0}\right|<0$, we have the potential maximum at $x=0$ and two symmetric minima at $x= \pm 2 a$. Now, there is no motion with $E<-\frac{1}{12}\left|E_{0}\right|$ and we have

$$
\begin{array}{r}
-\frac{1}{12}\left|E_{0}\right|<E<0: 2 \text { turning points, } \\
0<E<\frac{1}{4}\left|E_{0}\right|: 1 \text { turning point, } \\
\frac{1}{4}\left|E_{0}\right|<E: \text { no turning points. }
\end{array}
$$

The force near the minimum at $x= \pm 2 a$ is $F(x)=-m \omega^{2}(x \mp 2 a)$ with $\omega^{2}=\frac{2}{27} \frac{\left|E_{0}\right|}{m a^{2}}$, so that we have the period

$$
\frac{2 \pi}{\omega}=\frac{2 \pi a}{\sqrt{\frac{2}{27}\left|E_{0}\right| / m}}
$$

4
(a) We calculate the respective curls.
(i) This force is conservative:

$$
\boldsymbol{\nabla} \times \boldsymbol{F}(\boldsymbol{r}) \hat{=}\left(\begin{array}{c}
\frac{\partial}{\partial y}(k y+2 k z)-\frac{\partial}{\partial z}(k x+k z) \\
\frac{\partial}{\partial z}(2 k x+k y)-\frac{\partial}{\partial x}(k y+2 k z) \\
\frac{\partial}{\partial x}(k x+k z)-\frac{\partial}{\partial y}(2 k x+k y)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) ;
$$

(ii) This for is not conservative:

$$
\boldsymbol{\nabla} \times \boldsymbol{F}(\boldsymbol{r})=-\boldsymbol{b} \times \boldsymbol{\nabla} r=-\boldsymbol{b} \times \frac{\boldsymbol{r}}{r} \neq 0
$$

(iii) This force is conservative:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F}(\boldsymbol{r}) & =\boldsymbol{\nabla} \times \frac{\boldsymbol{a}}{r}-\boldsymbol{\nabla} \times \frac{\boldsymbol{r} \boldsymbol{r} \cdot \boldsymbol{a}}{r^{3}} \\
& =-\boldsymbol{a} \times \nabla \frac{1}{r}-\frac{\boldsymbol{r} \cdot \boldsymbol{a}}{r^{3}} \underbrace{\nabla \times \boldsymbol{r}}_{=0}+\boldsymbol{r} \times \boldsymbol{\nabla} \frac{\boldsymbol{r} \cdot \boldsymbol{a}}{r^{3}} \\
& =\boldsymbol{a} \times \frac{\boldsymbol{r}}{r^{3}}+\boldsymbol{r} \times\left(\frac{\boldsymbol{\nabla} \cdot \boldsymbol{a}}{r^{3}}+\boldsymbol{r} \cdot \boldsymbol{a} \boldsymbol{\nabla} \frac{1}{r^{3}}\right) \\
& =\boldsymbol{a} \times \frac{\boldsymbol{r}}{r^{3}}+\boldsymbol{r} \times\left(\frac{\boldsymbol{a}}{r^{3}}-\boldsymbol{r} \cdot \boldsymbol{a} \frac{3 \boldsymbol{r}}{r^{5}}\right)=0 .
\end{aligned}
$$

(b) There is no potential energy for force (ii). The other cases are

$$
\begin{aligned}
& \text { (i) } V(\boldsymbol{r})=-k x^{2}-k x y-k y z-k z^{2} \text {; } \\
& \text { (iii) } V(\boldsymbol{r})=-\frac{\boldsymbol{a} \cdot \boldsymbol{r}}{r} \text {. }
\end{aligned}
$$

