(a) From $m \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{\gamma t} \dot{x}\right)=\mathrm{e}^{\gamma t} F(t)$ we get first

$$
\dot{x}\left(t^{\prime \prime}\right)=\int_{0}^{t^{\prime \prime}} \mathrm{d} t^{\prime} \mathrm{e}^{-\gamma\left(t^{\prime \prime}-t^{\prime}\right)} \frac{1}{m} F\left(t^{\prime}\right)
$$

and then

$$
\begin{aligned}
x(t) & =\int_{0}^{t} \mathrm{~d} t^{\prime \prime} \dot{x}\left(t^{\prime \prime}\right)=\int_{0}^{t} \mathrm{~d} t^{\prime} \underbrace{\gamma \int_{t^{\prime}}^{t} \mathrm{~d} t^{\prime \prime} \mathrm{e}^{-\gamma\left(t^{\prime \prime}-t^{\prime}\right)}}_{=1-\mathrm{e}^{-\gamma\left(t-t^{\prime}\right)}} \frac{1}{\gamma m} F\left(t^{\prime}\right) \\
& =\int_{0}^{t} \mathrm{~d} t^{\prime} \frac{1-\mathrm{e}^{-\gamma\left(t-t^{\prime}\right)}}{\gamma} \frac{F\left(t^{\prime}\right)}{m} .
\end{aligned}
$$

Alternatively, one could just use the $\omega_{0} \rightarrow 0$ limit of the Green's function for the damped harmonic oscillator.
(b) Either by using the expression of (a) or the ansatz $x(t)=A \cos (\omega t)+$ $B \sin (\omega t)$, one finds

$$
x(t)=\frac{a / \omega}{\omega^{2}+\gamma^{2}}[\gamma \sin (\omega t)-\omega \cos (\omega t)] .
$$

2

(a) The potential energy has its minimum at $x=0$, and for $|x| \ll a$ we have

$$
V(x) \cong V_{0} \frac{x^{2}}{a^{2}}=\frac{1}{2} m \omega_{0}^{2} x^{2}
$$

so that $\omega_{0}^{2}=2 V_{0} /\left(m a^{2}\right)$ and the period is $T=2 \pi / \omega_{0}=\pi a \sqrt{2 m / V_{0}}$.
(b) All positive energies are permissible. We write $E=V_{0}\left[\tan \left(x_{0} / a\right)\right]^{2}$ and use the hint to arrive at

$$
\begin{aligned}
T(E) & =2 \int_{-x_{0}}^{x_{0}} \frac{\mathrm{~d} x}{\sqrt{\frac{2}{m}[E-V(x)]}} \\
& =\sqrt{\frac{2 m}{V_{0}}} a \cos \left(x_{0} / a\right) \underbrace{=\pi}_{-\int_{0} \frac{x_{0}}{a} \frac{\mathrm{~d} x}{\sqrt{\left[\sin \left(x_{0} / a\right)\right]^{2}-[\sin (x / a)]^{2}}}} \\
& =\pi a \sqrt{\frac{2 m}{V_{0}+E}}
\end{aligned}
$$

with $\cos \left(x_{0} / a\right)=\sqrt{V_{0} /\left(V_{0}+E\right)}$ in the last step.
3 Except for an overall factor of -3 , the main difference between

$$
\mathbf{I}=\int(\mathrm{d} \boldsymbol{r}) \rho(\boldsymbol{r})\left(r^{2} \mathbf{1}-\boldsymbol{r} \boldsymbol{r}\right) \quad \text { and } \quad \mathbf{Q}=\int(\mathrm{d} \boldsymbol{r}) \rho(\boldsymbol{r})\left(3 \boldsymbol{r} \boldsymbol{r}-r^{2} \mathbf{1}\right)
$$

is that \mathbf{Q} is traceless, whereas $\operatorname{tr}\{\mathbf{l}\}=\int(\mathrm{d} \boldsymbol{r}) \rho(\boldsymbol{r}) 2 r^{2}>0$. It follows that

$$
\mathbf{Q}=\operatorname{tr}\{\mathbf{I}\} \mathbf{1}-3 \mathbf{I} .
$$

4
(a) We have

$$
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-V(x, y) \quad \text { and } \quad H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+V(x, y)
$$

with the potential energy

$$
\begin{aligned}
V(x, y)= & \frac{k}{2}\left(\sqrt{(x+a)^{2}+y^{2}}-a\right)^{2}+\frac{k}{2}\left(\sqrt{x^{2}+(y+a)^{2}}-a\right)^{2} \\
& +\frac{k}{2}\left(\sqrt{\left(x-a \cos \theta_{0}\right)^{2}+\left(y-a \sin \theta_{0}\right)^{2}}-a\right)^{2} .
\end{aligned}
$$

(b) Clearly, $V(x, y) \geq 0$ and $V(x, y)=0$ only for $(x, y)=(0,0)$. All springs have their natural length when the point mass is at $(x, y)=(0,0)$.
(c) \quad For $|x| \ll a$ and $|y| \ll a$, we have

$$
V(x, y) \cong \frac{k}{2}\left[x^{2}+y^{2}+\left(x \cos \theta_{0}+y \sin \theta_{0}\right)^{2}\right] .
$$

The characteristic frequencies ω_{1} and ω_{2} are, therefore, such that the determinant of the 2×2 matrix in

$$
\left(\begin{array}{cc}
\omega^{2}-\omega_{0}^{2}\left[1+\left(\cos \theta_{0}\right)^{2}\right] & -\omega_{0}^{2} \sin \theta_{0} \cos \theta_{0} \\
-\omega_{0}^{2} \sin \theta_{0} \cos \theta_{0} & \omega^{2}-\omega_{0}^{2}\left[1+\left(\sin \theta_{0}\right)^{2}\right]
\end{array}\right) X=0
$$

vanishes for $\omega=\omega_{1}$ and $\omega=\omega_{2}$. This requires $\omega_{1}^{2}+\omega_{2}^{2}=3 \omega_{0}^{2}$ and $\omega_{1}^{2} \omega_{2}^{2}=$ $2 \omega_{0}^{4}$, so that $\omega_{1}=\omega_{0}$ and $\omega_{2}=\sqrt{2} \omega_{0}$. The respective mode amplitudes are

$$
X_{1}=\binom{-\sin \theta_{0}}{\cos \theta_{0}} \quad \text { and } \quad X_{2}=\binom{\cos \theta_{0}}{\sin \theta_{0}}
$$

(d) The slower normal mode " 1 " is an oscillation perpendicular to the line-ofsight from $(0,0)$ to $\left(x_{3}, y_{3}\right)=\left(a \cos \theta_{0}, a \sin \theta_{0}\right)$, and the faster normal mode " 2 " is an oscillation along the line-of-sight from $(0,0)$ to $\left(x_{3}, y_{3}\right)$.

