Problem 1 (15 marks)

Point masses m_1, m_2, \ldots, m_J have conservative line-of-sight pair forces among them and are exposed to the external forces $\boldsymbol{F}_j^{(\text{ext})} = m_j \boldsymbol{g}$ where \boldsymbol{g} is the same gravitational acceleration for all masses. At time t_0 , the initial conditions give values \boldsymbol{R}_0 , \boldsymbol{P}_0 , E_0 , and \boldsymbol{L}_0 to the center-of-mass position \boldsymbol{R} , the total momentum $\boldsymbol{P}_{\text{tot}}$, the total energy E_{tot} , and the total angular momentum $\boldsymbol{L}_{\text{tot}}$. Find $\boldsymbol{R}(t)$, $\boldsymbol{P}_{\text{tot}}(t)$, $E_{\text{tot}}(t)$, and $\boldsymbol{L}_{\text{tot}}(t)$.

Problem 2 (20 marks)

A point mass is scattered elastically by an impenetrable sphere with radius R. Invoke "angle of reflection = angle of incidence" and so determine the relation between the scattering angle θ and the impact parameter b. Then find the differential scattering cross section $\frac{d\sigma}{d\Omega}$ and the total cross section $\sigma = \int d\Omega \frac{d\sigma}{d\Omega}$.

Problem 3 (20 marks)

Under the gravitational pull $g = ge_y$, a point mass is moving along the brachistochrone to get from $(x_1, y_1) = (0, 0)$ to $(x_2, y_2) = (a, 0)$. What is the average speed?

Problem 4 (25=10+8+7 marks)

Point mass m is moving along the horizontal x axis. A spring of natural length a and spring constant k connects the mass to point (0, a) on the y axis.

- (a) State the Lagrange function $L(t, x, \dot{x})$ and derive the equation of motion for x(t). Is there a conserved quantity?
- (b) For the parameterization $x = a \sinh \vartheta$, state the Lagrange function $L(t, \vartheta, \dot{\vartheta})$, and derive the equation of motion for $\vartheta(t)$.
- (c) Which approximate equations of motion apply for $|x| \ll a$ and $|\vartheta| \ll 1$?