Problem 1 (15 marks)
Point masses $m_{1}, m_{2}, \ldots, m_{J}$ have conservative line-of-sight pair forces among them and are exposed to the external forces $\boldsymbol{F}_{j}^{(\text {ext })}=m_{j} \boldsymbol{g}$ where \boldsymbol{g} is the same gravitational acceleration for all masses. At time t_{0}, the initial conditions give values \boldsymbol{R}_{0}, $\boldsymbol{P}_{0}, E_{0}$, and \boldsymbol{L}_{0} to the center-of-mass position \boldsymbol{R}, the total momentum $\boldsymbol{P}_{\text {tot }}$, the total energy $E_{\text {tot }}$, and the total angular momentum $\boldsymbol{L}_{\text {tot }}$. Find $\boldsymbol{R}(t), \boldsymbol{P}_{\text {tot }}(t), E_{\text {tot }}(t)$, and $\boldsymbol{L}_{\text {tot }}(t)$.

Problem 2 (20 marks)
A point mass is scattered elastically by an impenetrable sphere with radius R. Invoke "angle of reflection $=$ angle of incidence" and so determine the relation between the scattering angle θ and the impact parameter b. Then find the differential scattering cross section $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ and the total cross section $\sigma=\int \mathrm{d} \Omega \frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$.

Problem 3 (20 marks)
Under the gravitational pull $g=g e_{y}$, a point mass is moving along the brachistochrone to get from $\left(x_{1}, y_{1}\right)=(0,0)$ to $\left(x_{2}, y_{2}\right)=(a, 0)$. What is the average speed?

Problem 4 ($25=10+8+7$ marks)
Point mass m is moving along the horizontal x axis. A spring of natural length a and spring constant k connects the mass to point $(0, a)$ on the y axis.
(a) State the Lagrange function $L(t, x, \dot{x})$ and derive the equation of motion for $x(t)$. Is there a conserved quantity?
(b) For the parameterization $x=a \sinh \vartheta$, state the Lagrange function $L(t, \vartheta, \dot{\vartheta})$, and derive the equation of motion for $\vartheta(t)$.
(c) Which approximate equations of motion apply for $|x| \ll a$ and $|\vartheta| \ll 1$?

