1 According to Section 4.5 of the lecture notes, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{R} & =\frac{1}{M} \boldsymbol{P}_{\mathrm{tot}}, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{P}_{\mathrm{tot}} & =\sum_{j=1}^{J} \boldsymbol{F}_{j}^{(\mathrm{ext})}=M \boldsymbol{g}, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} E_{\mathrm{tot}} & =\sum_{j=1}^{J} \boldsymbol{v}_{j} \cdot \boldsymbol{F}_{j}^{(\mathrm{ext})}=\boldsymbol{P}_{\mathrm{tot}} \cdot \boldsymbol{g}, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{L}_{\mathrm{tot}} & =\sum_{j=1}^{J} \boldsymbol{r}_{j} \times \boldsymbol{F}_{j}^{(\mathrm{ext})}=M \boldsymbol{R} \times \boldsymbol{g} .
\end{aligned}
$$

These are solved by

$$
\begin{aligned}
\boldsymbol{R}(t) & =\boldsymbol{R}_{0}+\frac{\boldsymbol{P}_{0}}{M}\left(t-t_{0}\right)+\frac{1}{2} \boldsymbol{g}\left(t-t_{0}\right)^{2}, \\
\boldsymbol{P}_{\mathrm{tot}}(t) & =\boldsymbol{P}_{0}+M \boldsymbol{g}\left(t-t_{0}\right), \\
E_{\mathrm{tot}}(t) & =E_{0}+\boldsymbol{P}_{0} \cdot \boldsymbol{g}\left(t-t_{0}\right)+\frac{1}{2} M g^{2}\left(t-t_{0}\right)^{2}, \\
\boldsymbol{L}_{\mathrm{tot}}(t) & =\boldsymbol{L}_{0}+M \boldsymbol{R}_{0} \times \boldsymbol{g}\left(t-t_{0}\right)+\frac{1}{2} \boldsymbol{P}_{0} \times \boldsymbol{g}\left(t-t_{0}\right)^{2} .
\end{aligned}
$$

2 Scattering occurs only when $b<R$. For $b<R$, then, we denote the angle of incidence by α. It is related to the impact parameter by $b=R \sin \alpha$ and to the scattering angle by $\theta=\pi-2 \alpha$. Therefore,

$$
\cos \theta=-\cos (2 \alpha)=2(\sin \alpha)^{2}-1=2(b / R)^{2}-1
$$

which implies

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{2}\left|\frac{\mathrm{~d} b^{2}}{\mathrm{~d} \cos \theta}\right|=\frac{1}{4} R^{2}
$$

for the differential cross section and $\sigma=\pi R^{2}$ for the total cross section.

3 According to Section 7.3 of the lecture notes, we have

$$
\begin{aligned}
& x=R(\phi-\sin \phi), \\
& y=R(1-\cos \phi)
\end{aligned}
$$

for the brachistochrone, here with $0 \leq \phi \leq 2 \pi$ and $R=a /(2 \pi)$. With

$$
\mathrm{d} s=\sqrt{(\mathrm{d} x)^{2}+(\mathrm{d} y)^{2}}=R \mathrm{~d} \phi \sqrt{2-2 \cos \phi}=2 R \mathrm{~d} \phi \sin \frac{\phi}{2}
$$

and

$$
v=\sqrt{2 g y}=2 \sqrt{g R} \sin \frac{\phi}{2}
$$

we get

$$
T=\int \frac{\mathrm{d} s}{v}=\int_{0}^{2 \pi} \mathrm{~d} \phi \frac{R}{\sqrt{g R}}=2 \pi \sqrt{R / g}
$$

for the duration and

$$
S=\int \mathrm{d} s=2 R \int_{0}^{2 \pi} \mathrm{~d} \phi \sin \frac{\phi}{2}=8 R
$$

for the distance covered. Their ratio is the average speed,

$$
\text { average speed }=\frac{S}{T}=\frac{4}{\pi} \sqrt{g R}=\frac{4}{\pi} \sqrt{\frac{g a}{2 \pi}} .
$$

4

(a) We have the Lagrange function

$$
L(t, x, \dot{x})=\frac{m}{2} \dot{x}^{2}-\frac{k}{2}\left(\sqrt{x^{2}+a^{2}}-a\right)^{2} ;
$$

it has no parametric t dependence. The energy

$$
E=\frac{m}{2} \dot{x}^{2}+\frac{k}{2}\left(\sqrt{x^{2}+a^{2}}-a\right)^{2}
$$

is conserved. The equation of motion is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} m \dot{x}=-k\left(\sqrt{x^{2}+a^{2}}-a\right) \frac{x}{\sqrt{x^{2}+a^{2}}}=-k x+\frac{k a x}{\sqrt{x^{2}+a^{2}}} .
$$

(b) Since $\dot{x}=a \dot{\vartheta} \cosh \vartheta$ and $\sqrt{x^{2}+a^{2}}=a \cosh \vartheta$, we have the Lagrange function

$$
L(t, \vartheta, \dot{\vartheta})=\frac{m a^{2}}{2}(\dot{\vartheta} \cosh \vartheta)^{2}-\frac{k a^{2}}{2}(\cosh \vartheta-1)^{2} .
$$

This gives the equation of motion

$$
m \frac{\mathrm{~d}}{\mathrm{~d} t}\left[\dot{\vartheta}(\cosh \vartheta)^{2}\right]=m \dot{\vartheta}^{2} \cosh \vartheta \sinh \vartheta-k(\cosh \vartheta-1) \sinh \vartheta
$$

or

$$
\ddot{\vartheta}(\cosh \vartheta)^{2}+\dot{\vartheta}^{2} \cosh \vartheta \sinh \vartheta=-\frac{k}{m}(\cosh \vartheta-1) \sinh \vartheta .
$$

(c) For $|x| \ll a$ we have $\sqrt{x^{2}+a^{2}}-a=\frac{x^{2}}{2 a}+\cdots$ and get the approximate Lagrange function

$$
L(x, \dot{x})=\frac{m}{2} \dot{x}^{2}-\frac{k x^{4}}{8 a^{2}}
$$

and the equation of motion

$$
m \ddot{x}=-\frac{k x^{3}}{2 a^{2}}
$$

Since $x=a \vartheta$ here, we also have $L(\vartheta, \dot{\vartheta})=\frac{m a^{2}}{2} \dot{\vartheta}^{2}-\frac{k a^{2} \vartheta^{4}}{8}$ and $\ddot{\vartheta}=-\frac{k}{2 m} \vartheta^{3}$.

