Problem 1 (20=10+10 marks)
The mirror image of r with respect to the plane through $\boldsymbol{r}=0$ that is perpendicular to unit vector \boldsymbol{e} is $\boldsymbol{r}-2 \boldsymbol{e} \boldsymbol{e} \cdot \boldsymbol{r}$. If we take two successive mirror images, first for \boldsymbol{e}_{1} and then for e_{2}, the overall effect is a rotation.
(a) Show that the axis of rotation is specified by $e_{1} \times e_{2}$.
(b) Express the angle of rotation ϕ in terms of the angle α between \boldsymbol{e}_{1} and \boldsymbol{e}_{2}, that is $\cos \alpha=\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{2}$.

Problem 2 (20 marks)
A constant force $F=m g$ is applied to a undamped harmonic oscillator (mass m, circular frequency ω_{0}, damping constant $\gamma=0$) for a finite duration T. It so happens that the oscillator is at $x=0$ at time $t=0$ and has vanishing velocity at time $t=T$. What are the position $x(t)$ and the velocity $\dot{x}(t)$ for $0<t<T$?

Problem 3 ($20=5+15$ marks)
A point mass m is moving along the x-axis under the influence of the force associated with the potential energy

$$
V(x)=-\frac{E_{0}}{[\cosh (k x)]^{2}},
$$

where E_{0} and k are positive constants.
(a) For which ranges of energy is the motion of the point mass bounded by two turning points, by one turning point, or not bounded at all?
(b) For energy E such that there is periodic motion between two turning points, find the period $T(E)$.
Hint: The identity $\left(\cosh \vartheta_{1}\right)^{2}-\left(\cosh \vartheta_{2}\right)^{2}=\left(\sinh \vartheta_{1}\right)^{2}-\left(\sinh \vartheta_{2}\right)^{2}$ could be useful.

Problem 4 ($20=12+8$ marks)
A force field $\boldsymbol{F}(\boldsymbol{r})$ has the form

$$
\boldsymbol{F}(\boldsymbol{r})=f_{1}(r) \boldsymbol{a}+f_{2}(r) \boldsymbol{a} \cdot \boldsymbol{r} \boldsymbol{r}
$$

with a constant vector \boldsymbol{a} and non-singular functions $f_{1}(r)$ and $f_{2}(r)$ that depend only on the distance $r=|\boldsymbol{r}|$ from the origin of the coordinate system.
(a) How are $f_{1}(r)$ and $f_{2}(r)$ related if $\boldsymbol{F}(\boldsymbol{r})$ is a conservative force?
(b) What is the potential energy associated with such a conservative force?

Hint: The curl of a scalar field $b(\boldsymbol{r})$ times a vector field $\boldsymbol{B}(\boldsymbol{r})$ is given by the product rule, $\boldsymbol{\nabla} \times(b \boldsymbol{B})=\boldsymbol{\nabla} b \times \boldsymbol{B}+b \boldsymbol{\nabla} \times \boldsymbol{B}$.

