Problem 1 (20=10+10 marks)

The mirror image of r with respect to the plane through r = 0 that is perpendicular to unit vector e is $r - 2e e \cdot r$. If we take two successive mirror images, first for e_1 and then for e_2 , the overall effect is a rotation.

- (a) Show that the axis of rotation is specified by $e_1 \times e_2$.
- (b) Express the angle of rotation ϕ in terms of the angle α between e_1 and e_2 , that is $\cos \alpha = e_1 \cdot e_2$.

Problem 2 (20 marks)

A constant force F = mg is applied to a undamped harmonic oscillator (mass m, circular frequency ω_0 , damping constant $\gamma = 0$) for a finite duration T. It so happens that the oscillator is at x = 0 at time t = 0 and has vanishing velocity at time t = T. What are the position x(t) and the velocity $\dot{x}(t)$ for 0 < t < T?

Problem 3 (20=5+15 marks)

A point mass m is moving along the x-axis under the influence of the force associated with the potential energy

$$V(x) = -\frac{E_0}{\left[\cosh(kx)\right]^2},$$

where E_0 and k are positive constants.

- (a) For which ranges of energy is the motion of the point mass bounded by two turning points, by one turning point, or not bounded at all?
- (b) For energy E such that there is periodic motion between two turning points, find the period T(E).

Hint: The identity $(\cosh \vartheta_1)^2 - (\cosh \vartheta_2)^2 = (\sinh \vartheta_1)^2 - (\sinh \vartheta_2)^2$ could be useful.

Problem 4 (20=12+8 marks) A force field F(r) has the form

$$\boldsymbol{F}(\boldsymbol{r}) = f_1(r)\boldsymbol{a} + f_2(r)\boldsymbol{a} \cdot \boldsymbol{r} \boldsymbol{r}$$

with a constant vector \boldsymbol{a} and non-singular functions $f_1(r)$ and $f_2(r)$ that depend only on the distance $r = |\boldsymbol{r}|$ from the origin of the coordinate system.

(a) How are $f_1(r)$ and $f_2(r)$ related if F(r) is a conservative force?

(b) What is the potential energy associated with such a conservative force?

Hint: The curl of a scalar field $b(\mathbf{r})$ times a vector field $\mathbf{B}(\mathbf{r})$ is given by the product rule, $\nabla \times (b\mathbf{B}) = \nabla b \times \mathbf{B} + b\nabla \times \mathbf{B}$.