1 The overall effect of the two successive reflections is the mapping

$$
\boldsymbol{r} \rightarrow \boldsymbol{r}-2 \boldsymbol{e}_{1} \boldsymbol{e}_{1} \cdot \boldsymbol{r} \rightarrow\left(\boldsymbol{r}-2 \boldsymbol{e}_{1} \boldsymbol{e}_{1} \cdot \boldsymbol{r}\right)-2 \boldsymbol{e}_{2} \boldsymbol{e}_{2} \cdot\left(\boldsymbol{r}-2 \boldsymbol{e}_{1} \boldsymbol{e}_{1} \cdot \boldsymbol{r}\right),
$$

that is: $\boldsymbol{r} \rightarrow \boldsymbol{r}-2 \boldsymbol{e}_{1} \boldsymbol{e}_{1} \cdot \boldsymbol{r}-2 \boldsymbol{e}_{2} e_{2} \cdot \boldsymbol{r}+4 e_{2} \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{1} \boldsymbol{e}_{1} \cdot \boldsymbol{r}$. In the case of $e_{1}= \pm \boldsymbol{e}_{2}$, the second reflection undoes the first and the overall mapping is the identity.
(a) We need to verify that $e_{1} \times e_{2}$ is mapped onto itself, which is immediate.
(b) We take a vector that is perpendicular to the rotation axis, such as e_{1}. This is mapped onto $-e_{1}+2 e_{2} e_{2} \cdot e_{1}$, so that

$$
\cos \phi=\boldsymbol{e}_{1} \cdot\left(-\boldsymbol{e}_{1}+2 \boldsymbol{e}_{2} \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{1}\right)=-1+2\left(\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{2}\right)^{2}=-1+2(\cos \alpha)^{2}=\cos (2 \alpha) .
$$

This gives $\phi=2 \alpha$ or $\phi=-2 \alpha$.

2 We use (2.2.140) for $\gamma=0, \omega=\omega_{0}, x_{0}=0$ and $F\left(t^{\prime}\right)=m g$,

$$
x(t)=v_{0} \frac{\sin \left(\omega_{0} t\right)}{\omega_{0}}+g \int_{0}^{t} \mathrm{~d} t^{\prime} \frac{\sin \left(\omega_{0}\left(t-t^{\prime}\right)\right)}{\omega_{0}}=v_{0} \frac{\sin \left(\omega_{0} t\right)}{\omega_{0}}+\frac{g}{\omega_{0}^{2}}\left[1-\cos \left(\omega_{0} t\right)\right],
$$

where we need to find v_{0} such that $\dot{x}(T)=0$. This requirement reads

$$
v_{0} \cos \left(\omega_{0} T\right)+\frac{g}{\omega_{0}} \sin \left(\omega_{0} T\right)=0 \quad \text { or } \quad v_{0}=-\frac{g}{\omega_{0}} \tan \left(\omega_{0} T\right)
$$

so that we have

$$
x(t)=\frac{g}{\omega_{0}^{2}}-\frac{g}{\omega_{0}^{2}} \frac{\sin \left(\omega_{0} t\right) \sin \left(\omega_{0} T\right)+\cos \left(\omega_{0} t\right) \cos \left(\omega_{0} T\right)}{\cos \left(\omega_{0} T\right)}=\frac{g}{\omega_{0}^{2}}-\frac{g}{\omega_{0}^{2}} \frac{\cos \left(\omega_{0}(T-t)\right)}{\cos \left(\omega_{0} T\right)}
$$

and

$$
\dot{x}(t)=-\frac{g}{\omega_{0}} \frac{\sin \left(\omega_{0}(T-t)\right)}{\cos \left(\omega_{0} T\right)}
$$

at intermediate times.
(a) For $E>0$ the motion is unbounded; for $0>E>-E_{0}$ we have motion between two turning points; there is no energy range with motion bounded by one turning point; $E<-E_{0}$ is not possible.
(b) For $E=V(\pm a)=-E_{0} /[\cosh (k a)]^{2}$, (3.1.19) gives

$$
\begin{aligned}
T(E) & =2 \int_{-a}^{a} \mathrm{~d} x\left[\frac{2 E_{0}}{m}\left(\frac{1}{\cosh (k x)^{2}}-\frac{1}{\cosh (k a)^{2}}\right)\right]^{-1 / 2} \\
& =\sqrt{\frac{2 m}{E_{0}}} \int_{-a}^{a} \mathrm{~d} x \frac{\cosh (k a) \cosh (k x)}{\sqrt{\cosh (k a)^{2}-\cosh (k x)^{2}}} \\
& =\sqrt{\frac{2 m}{E_{0}}} \frac{\cosh (k a)}{k} \underbrace{\int_{-a}^{a} \mathrm{~d} x \frac{k \cosh (k x)}{\sqrt{\sinh (k a)^{2}-\sinh (k x)^{2}}}}_{=\pi},
\end{aligned}
$$

where the integral can be evaluated with the substitution $\sinh (k x)=$ $\sinh (k a) \sin \varphi$. With $\cosh (k a)=\sqrt{-E_{0} / E}$, the final answer is

$$
T(E)=\frac{\pi}{k} \sqrt{\frac{2 m}{-E}} \quad \text { for }-E_{0}<E<0
$$

4

(a) The curl of \boldsymbol{F} is

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F}(\boldsymbol{r})= & \underbrace{\boldsymbol{\nabla} f_{1}(r)}_{=\frac{1}{r} f_{1}^{\prime}(r) \boldsymbol{r}} \times \boldsymbol{a}+\underbrace{\boldsymbol{\nabla} f_{2}(r)}_{=\frac{1}{r} f_{2}^{\prime}(r) \boldsymbol{r}} \times(\boldsymbol{a} \cdot \boldsymbol{r} \boldsymbol{r})+f_{2}(r)(\underbrace{\boldsymbol{\nabla} \boldsymbol{a} \cdot \boldsymbol{r}}_{=\boldsymbol{a}}) \times \boldsymbol{r} \\
& +f_{2}(r) \boldsymbol{a} \cdot \boldsymbol{r} \underbrace{\boldsymbol{\nabla} \times \boldsymbol{r}}_{=0}=\left(\frac{1}{r} f_{1}^{\prime}(r)-f_{2}(r)\right) \boldsymbol{r} \times \boldsymbol{a} .
\end{aligned}
$$

For a conservative force, we need a vanishing curl, which requires $f_{2}(r)=$ $\frac{1}{r} f_{1}^{\prime}(r)$.
(b) Now, for $f_{2}(r)=\frac{1}{r} f_{1}^{\prime}(r)$, we have
$\boldsymbol{F}(\boldsymbol{r})=f_{1}(r) \boldsymbol{a}+\frac{1}{r} f_{1}^{\prime}(r) \boldsymbol{a} \cdot \boldsymbol{r} \boldsymbol{r}=f_{1}(r) \nabla(\boldsymbol{a} \cdot \boldsymbol{r})+\boldsymbol{a} \cdot \boldsymbol{r} \boldsymbol{\nabla} f_{1}(r)=\boldsymbol{\nabla}\left(f_{1}(r) \boldsymbol{a} \cdot \boldsymbol{r}\right)$,
so that $V(\boldsymbol{r})=-f_{1}(r) \boldsymbol{a} \cdot \boldsymbol{r}$ is a potential energy for this conservative force.

