1 As we know, the electric field is

$$
\vec{E}(\vec{r})=\eta(r-R) e \frac{\vec{r}}{r^{3}}
$$

and the magnetic field is

$$
\vec{B}(\vec{r})=\eta(R-r) \frac{2 \vec{\mu}}{R^{3}}+\eta(r-R) \frac{3 \vec{\mu} \cdot \vec{r} \vec{r}-r^{2} \vec{\mu}}{r^{5}}
$$

where

$$
\vec{\mu}=\frac{e R^{2}}{3 c} \vec{\omega}
$$

is the magnetic dipole moment.
(a) We have the energy density

$$
U=\frac{1}{8 \pi} \eta(R-r)\left(\frac{2 \vec{\mu}}{R^{3}}\right)^{2}+\frac{1}{8 \pi} \eta(r-R)\left[\left(e \frac{\vec{r}}{r^{3}}\right)^{2}+\left(\frac{3 \vec{\mu} \cdot \vec{r} \vec{r}-r^{2} \vec{\mu}}{r^{5}}\right)^{2}\right]
$$

for which the integration over the solid angle gives

$$
\int \mathrm{d} \Omega U=\eta(R-r) \frac{2 \mu^{2}}{R^{6}}+\eta(r-R)\left(\frac{e^{2}}{2 r^{4}}+\frac{\mu^{2}}{r^{6}}\right)
$$

Accordingly, the total energy is

$$
\int(\mathrm{d} \vec{r}) U=\int_{0}^{R} \mathrm{~d} r r^{2} \frac{2 \mu^{2}}{R^{6}}+\int_{R}^{\infty} \mathrm{d} r r^{2}\left(\frac{e^{2}}{2 r^{4}}+\frac{\mu^{2}}{r^{6}}\right)=\frac{e^{2}}{2 R}+\frac{\mu^{2}}{R^{3}}
$$

(b) The angular momentum density is

$$
\vec{r} \times \frac{1}{4 \pi c}[\vec{E}(\vec{r}) \times \vec{B}(\vec{r})]=\eta(r-R) \frac{1}{4 \pi c} \frac{e}{r^{6}} \vec{r} \times(\vec{\mu} \times \vec{r}),
$$

so that

$$
\vec{J}=\frac{e}{c} \int_{R}^{\infty} \mathrm{d} r \frac{1}{r^{4}} \underbrace{\int \frac{\mathrm{~d} \Omega}{4 \pi} \vec{r} \times(\vec{\mu} \times \vec{r})}_{=\frac{2}{3} r^{2} \vec{\mu}}=\frac{2 e \vec{\mu}}{3 c R}
$$

(c) The energy current density is

$$
\vec{r} \times \vec{G}=\vec{S}=\frac{c}{4 \pi}[\vec{E}(\vec{r}) \times \vec{B}(\vec{r})]=\eta(r-R) \frac{c}{4 \pi} \frac{e}{r^{6}} \vec{\mu} \times \vec{r} .
$$

For $r=R+0$ ("just outside"), this gives

$$
\left.\vec{S}\right|_{r=R+0}=\frac{1}{4 \pi} \frac{e^{2}}{3 R^{4}} \vec{v},
$$

where $\vec{v}=\omega \times \vec{r}=R \omega \times \vec{r} / r$ is the velocity of the charge on the surface.

2 We know, from some exercises, that acceleration by a constant force $F=$ $e|\vec{E}|$ gives a rapidity $\theta(t)$ such that $\sinh (\theta(t))=F t /(m c)$ and for the product of $\gamma^{3}=\cosh (\theta(t))^{3}$ and $\frac{\mathrm{d} v(t)}{\mathrm{d} t}=c \frac{\mathrm{~d}}{\mathrm{~d} t} \tanh (\theta(t))$ we have

$$
\gamma^{3} \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{F}{m},
$$

so that the rate of radiative energy loss is constant,

$$
-\left.\frac{\mathrm{d} E}{\mathrm{~d} t}\right|_{\mathrm{rad}}=\frac{2 e^{2} F^{2}}{3 m^{2} c^{3}}=\frac{2}{3} \frac{e^{2}}{L}\left(\frac{e V}{m c^{2}}\right)^{2} \frac{c}{L},
$$

where $V=L|\vec{E}|$ is the voltage drop in each half of the tandem accelerator.
The distance traveled in time T is $c \int_{0}^{T} \mathrm{~d} t \tanh (\theta(t))$. For

$$
\tanh (\theta(t))=\frac{F t}{\sqrt{(m c)^{2}+(F t)^{2}}}=\frac{\mathrm{d}}{\mathrm{~d} t} \sqrt{(m c / F)^{2}+t^{2}}
$$

this gives

$$
\frac{2 L}{c}=\sqrt{\left(\frac{m c}{F}\right)^{2}+T^{2}}-\frac{m c}{F} \quad \text { or } \quad T=2 \sqrt{\left(\frac{L}{c}+\frac{m c}{F}\right) \frac{L}{c}}=\frac{2 L}{c} \sqrt{1+\frac{m c^{2}}{e V}}
$$

for the duration T of the whole acceleration period. It follows that the total energy radiated is

$$
\frac{4}{3} \frac{e^{2}}{L}\left(\frac{e V}{m c^{2}}\right)^{2} \sqrt{1+\frac{m c^{2}}{e V}}
$$

3 Upon recalling (12.2.6) and remembering that $\cos \theta \simeq 1$ for the relevant angles, the relation of (12.3.8) gives the stated differential cross section. Then, since scattering is almost exclusively in the forward direction, we have $k^{2} \mathrm{~d} \Omega=$ ($\mathrm{d} \vec{k}_{\perp}$) and so get

$$
\begin{aligned}
\sigma & =\int\left(\mathrm{d} \vec{k}_{\perp}\right)\left(\frac{1}{2 \pi}\right)^{2} \int_{\text {aperture }}\left(\mathrm{d} \vec{r}_{\perp}\right) \mathrm{e}^{-\mathrm{i} \vec{k} \cdot \vec{r}_{\perp}} \int_{\text {aperture }}\left(\mathrm{d} \vec{r}_{\perp}^{\prime}\right) \mathrm{e}^{\mathrm{i} \vec{k} \cdot \vec{r}_{\perp}^{\prime}} \\
& =\int_{\text {aperture }}\left(\mathrm{d} \vec{r}_{\perp}\right) \int_{\text {aperture }}\left(\mathrm{d} \vec{r}_{\perp}^{\prime}\right) \delta\left(\vec{r}_{\perp}-\vec{r}_{\perp}^{\prime}\right)=\int_{\text {aperture }}\left(\mathrm{d} \vec{r}_{\perp}\right),
\end{aligned}
$$

so that σ is the area of the aperture.

