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(c) The energy current density is
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For r = R+ 0 (“just outside”), this gives
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where ~v = ω ××~r = Rω ××~r/r is the velocity of the charge on the surface.



2 We know, from some exercises, that acceleration by a constant force F =
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where V = L|
→
E| is the voltage drop in each half of the tandem accelerator.
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for the duration T of the whole acceleration period. It follows that the total
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3 Upon recalling (12.2.6) and remembering that cos θ ' 1 for the relevant
angles, the relation of (12.3.8) gives the stated differential cross section. Then,
since scattering is almost exclusively in the forward direction, we have k2dΩ =
(d~k⊥) and so get
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so that σ is the area of the aperture.


