1 All points on the circle at $z=0$ are the same distance $\sqrt{R^{2}+z^{2}}$ away from $\vec{r}=z \vec{e}_{z}$, where we want to find the retarded potentials. The retardation condition (6.3.3) is then

$$
t_{\mathrm{ret}}+\frac{1}{c} \sqrt{R^{2}+z^{2}}=t
$$

and since $\vec{R}\left(t_{\text {ret }}\right)$ and $\vec{V}\left(t_{\text {ret }}\right)$ are both perpendicular to \vec{r}, we have - for this geometry - the retarded potentials

$$
\Phi(\vec{r}, t)=\frac{e}{\sqrt{R^{2}+z^{2}}} \quad \text { for } \quad \vec{r}=z \vec{e}_{z}
$$

and

$$
\vec{A}(\vec{r}, t)=\frac{1}{c} \vec{V}\left(t_{\mathrm{ret}}\right) \frac{e}{\sqrt{R^{2}+z^{2}}} \quad \text { for } \quad \vec{r}=z \vec{e}_{z},
$$

where

$$
\vec{V}\left(t_{\mathrm{ret}}\right)=v\left[-\vec{e}_{x} \sin \varphi+\vec{e}_{y} \cos \varphi\right]
$$

with

$$
\varphi=\frac{v t_{\mathrm{ret}}}{R}=\frac{v t}{R}-\frac{v}{c} \sqrt{1+(z / R)^{2}} .
$$

2 The charge and current densities are

$$
\begin{aligned}
& \rho(\vec{r})=\frac{e}{4 \pi R^{2}} \delta(r-R), \\
& \vec{j}(\vec{r})=\vec{\omega} \times \vec{r} \rho(\vec{r}, t)=\vec{\nabla} \times\left[\frac{e}{4 \pi R} \vec{\omega} \eta(R-r)\right] .
\end{aligned}
$$

The electric field is

$$
\vec{E}(\vec{r})=\frac{\vec{r}}{r^{3}} 4 \pi \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime 2} \frac{e}{4 \pi R^{2}} \delta\left(r^{\prime}-R\right)=\eta(r-R) e \frac{\vec{r}}{r^{3}},
$$

that is: no electric field inside the sphere, and outside it is the Coulomb field of the net charge.

The magnetic dipole moment is

$$
\vec{\mu}=\frac{e}{8 \pi R c} \int(\mathrm{~d} \vec{r}) \underbrace{\vec{r} \times[\vec{\nabla} \times \vec{\omega} \eta(R-r)]}_{\rightarrow 2 \vec{\omega} \eta(R-r)}=\frac{e}{4 \pi R c} \vec{\omega} \frac{4 \pi R^{3}}{3}=\frac{e R^{2}}{3 c} \vec{\omega},
$$

so that

$$
\vec{j}(\vec{r})=\vec{\nabla} \times\left[\frac{3 c}{4 \pi R^{3}} \vec{\mu} \eta(R-r)\right] .
$$

This gives first the vector potential

$$
\begin{aligned}
\vec{A}(\vec{r}) & =\frac{1}{c} \int\left(\mathrm{~d} \vec{r}^{\prime}\right) \frac{\vec{j}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}=-\frac{3}{4 \pi R^{3}} \vec{\mu} \times \int\left(\mathrm{d} \vec{r}^{\prime}\right) \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} \vec{\nabla}^{\prime} \eta\left(R-r^{\prime}\right) \\
& =-\frac{3}{4 \pi R^{3}} \vec{\mu} \times \vec{\nabla} \int\left(\mathrm{d} \vec{r}^{\prime}\right) \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} \eta\left(R-r^{\prime}\right) \\
& =\frac{3}{4 \pi R^{3}} \vec{\mu} \times \frac{\vec{r}}{r^{3}} 4 \pi \int_{0}^{r} \mathrm{~d} r^{\prime} r^{\prime 2} \eta\left(R-r^{\prime}\right) \\
& =\frac{\vec{\mu} \times \vec{r}}{R^{3} r^{3}} \min \left\{R^{3}, r^{3}\right\}=\frac{\vec{\mu} \times \vec{r}}{\max \left\{R^{3}, r^{3}\right\}} \\
& =\eta(R-r) \frac{\vec{\mu} \times \vec{r}}{R^{3}}+\eta(r-R) \frac{\vec{\mu} \times \vec{r}}{r^{3}}
\end{aligned}
$$

and then the magnetic field

$$
\vec{B}(\vec{r})=\vec{\nabla} \times \vec{A}(\vec{r})=\eta(R-r) \frac{2 \vec{\mu}}{R^{3}}+\eta(r-R) \frac{3 \vec{\mu} \cdot \vec{r} \vec{r}-r^{2} \vec{\mu}}{r^{5}}
$$

that is: a constant magnetic field inside the sphere, and outside it is the field of the magnetic dipole $\vec{\mu}$.

3 In (see Exercise 33)

$$
-\left.\frac{\mathrm{d} E}{\mathrm{~d} t}\right|_{\mathrm{rad}}=\frac{2 e^{2}}{3 c^{3}} \gamma^{6}\left[\left(\frac{\mathrm{~d} \vec{v}}{\mathrm{~d} t}\right)^{2}-\left(\frac{\vec{v}}{c} \times \frac{\mathrm{d} \vec{v}}{\mathrm{~d} t}\right)^{2}\right]
$$

we insert what applies for motion on a circle with constant speed, that is:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{v}=\vec{\omega}_{0} \times \vec{v}, \quad v=\omega_{0} R, \quad \vec{v} \times \frac{\mathrm{d}}{\mathrm{~d} t} \vec{v}=v^{2} \vec{\omega}_{0}
$$

and so get

$$
-\left.\frac{\mathrm{d} E}{\mathrm{~d} t}\right|_{\mathrm{rad}}=\frac{2 e^{2}}{3 c^{3}} \gamma^{6} \underbrace{\left[\left(\omega_{0} v\right)^{2}-\left(v^{2} \omega_{0} / c\right)^{2}\right]}_{=\left(\omega_{0} v\right)^{2} / \gamma^{2}}=\frac{2 e^{2}}{3 c^{3}} \gamma^{4}\left(\omega_{0} v\right)^{2}=\frac{2}{3} \omega_{0} \frac{e^{2}}{R} \beta^{3} \gamma^{4}
$$

which is the familiar result.

