The Problem (100 marks)
Consider this ring antenna: a thin wire in the shape of a circle with radius a in the x, y plane, centered at $\vec{r}=0$, that carries a periodic current $I \cos (\omega t)$. The electric current density is

$$
\vec{j}(\vec{r}, t)=I \cos (\omega t) \delta(r-a) \delta(z) \vec{e}_{z} \times \frac{\vec{r}}{r}
$$

and we are interested in $\frac{\mathrm{d} P}{\mathrm{~d} \Omega}$, the angular distribution of the radiated power, averaged over one period.
(a) Explain why $a \omega \ll c$ means a "small" antenna? What is $\frac{\mathrm{d} P}{\mathrm{~d} \Omega}$ in the smallantenna limit? What is the corresponding total power $P=\int \mathrm{d} \Omega \frac{\mathrm{d} P}{\mathrm{~d} \Omega}$?
(b) Find $\frac{\mathrm{d} P}{\mathrm{~d} \Omega}$ without any assumption about the value of $a \omega / c$.
(c) Sketch the pattern of the angular distribution of the radiation emitted by the ring antenna for $a \omega \ll c$ and $a \omega \gg c$ and describe how the patterns differ. The plot below of the Bessel functions $\mathrm{J}_{0}(x)$ and $\mathrm{J}_{1}(x)$ could be helpful.

