## The Problem (100 marks)

Consider this ring antenna: a thin wire in the shape of a circle with radius a in the x, y plane, centered at  $\vec{r} = 0$ , that carries a periodic current  $I \cos(\omega t)$ . The electric current density is

$$\vec{j}(\vec{r},t) = I\cos(\omega t)\,\delta(r-a)\,\delta(z)\,\vec{e}_z \times \frac{\vec{r}}{r}\,,$$

and we are interested in  $\frac{dP}{d\Omega}$ , the angular distribution of the radiated power, averaged over one period.

- (a) Explain why  $a\omega \ll c$  means a "small" antenna? What is  $\frac{\mathrm{d}P}{\mathrm{d}\Omega}$  in the smallantenna limit? What is the corresponding total power  $P = \int \mathrm{d}\Omega \frac{\mathrm{d}P}{\mathrm{d}\Omega}$ ?
- (b) Find  $\frac{\mathrm{d}P}{\mathrm{d}\Omega}$  without any assumption about the value of  $a\omega/c$ .
- (c) Sketch the pattern of the angular distribution of the radiation emitted by the ring antenna for  $a\omega \ll c$  and  $a\omega \gg c$  and describe how the patterns differ. The plot below of the Bessel functions  $J_0(x)$  and  $J_1(x)$  could be helpful.

