
Problem 1 (20 marks)
Mr. Ah Beng is eyeing Miss Ah Lian, who sees a particle moving with velocity ~u. If
he took his eyes off her and watched the particle as well, which velocity ~u′ would
he observe, given that she has velocity ~v relative to him, with ~v perpendicular to ~u?
Verify that u′ ≤ c for v < c and u ≤ c.

Problem 2 (20 marks)
In lecture we met the Lagrange density for the electromagnetic field,
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where
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A are regarded as independent fields. Use their known transfor-

mation laws to establish how L responds to infinitesimal Lorentz transformations.

Problem 3 (30 marks)
The Schwinger-type Lagrange function for a relativistic particle of mass m, in force-
free motion, is
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Show that this gives the familiar nonrelativistic expression for v � c. Then use
the implied relation between ~v and ~p to eliminate the velocity ~v and so find the
corresponding Hamilton function H(~r,~p). What is the physical meaning of the action

W12 =
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dt L evaluated for an actual trajectory?

Problem 4 (30 marks)

The charge density of an electric point dipole ~d at rest at ~r = 0 is given by

ρ(~r) = −~d ·
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Verify that ∫
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∫
(d~r)~rρ(~r) = ~d .

Then find the electrostatic potential Φ(~r) and the electric field
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dipole. You may find it convenient to make use of the dyadic double gradient of
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Why do we need to subtract the “contact term”
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