Problem 1 (20 marks)
Mr. Ah Beng is eyeing Miss Ah Lian, who sees a particle moving with velocity \vec{u}. If he took his eyes off her and watched the particle as well, which velocity \vec{u}^{\prime} would he observe, given that she has velocity \vec{v} relative to him, with \vec{v} perpendicular to \vec{u} ? Verify that $u^{\prime} \leq c$ for $v<c$ and $u \leq c$.

Problem 2 (20 marks)
In lecture we met the Lagrange density for the electromagnetic field,

$$
\mathcal{L}=\frac{1}{4 \pi}\left[\vec{E} \cdot\left(-\frac{1}{c} \frac{\partial}{\partial t} \vec{A}-\vec{\nabla} \Phi\right)-\vec{B} \cdot(\vec{\nabla} \times \vec{A})-\frac{1}{2}\left(\vec{E}^{2}-\vec{B}^{2}\right)\right],
$$

where \vec{E}, \vec{B}, Φ, and \vec{A} are regarded as independent fields. Use their known transformation laws to establish how \mathcal{L} responds to infinitesimal Lorentz transformations.

Problem 3 (30 marks)
The Schwinger-type Lagrange function for a relativistic particle of mass m, in forcefree motion, is

$$
L=\vec{p} \cdot\left(\frac{\mathrm{~d} \vec{r}}{\mathrm{~d} t}-\vec{v}\right)+m c\left(c-\sqrt{c^{2}-v^{2}}\right) .
$$

Show that this gives the familiar nonrelativistic expression for $v \ll c$. Then use the implied relation between \vec{v} and \vec{p} to eliminate the velocity \vec{v} and so find the corresponding Hamilton function $H(\vec{r}, \vec{p})$. What is the physical meaning of the action $W_{12}=\int_{2}^{1} \mathrm{~d} t L$ evaluated for an actual trajectory?

Problem 4 (30 marks)
The charge density of an electric point dipole \vec{d} at rest at $\vec{r}=0$ is given by

$$
\rho(\vec{r})=-\vec{d} \cdot \vec{\nabla} \delta(\vec{r}) .
$$

Verify that

$$
\int(\mathrm{d} \vec{r}) \rho(\vec{r})=0 \quad \text { and } \quad \int(\mathrm{d} \vec{r}) \vec{r} \rho(\vec{r})=\vec{d} .
$$

Then find the electrostatic potential $\Phi(\vec{r})$ and the electric field $\vec{E}(\vec{r})$ of the point dipole. You may find it convenient to make use of the dyadic double gradient of $\frac{1}{r}$ that is given by

$$
\vec{\nabla} \vec{\nabla} \frac{1}{r}=\frac{3 \vec{r} \vec{r}-r^{2} \overleftrightarrow{1}}{r^{5}}-\frac{4 \pi \overleftrightarrow{~}}{3} \delta(\vec{r}) .
$$

Why do we need to subtract the "contact term" $\frac{4 \pi}{3} \overleftrightarrow{1} \delta(\vec{r})$?

