Problem 1 (25 marks)
Consider the following sequence of four infinitesimal Lorentz transformations:
first by $\delta \vec{v}_{1}$, then by $\delta \vec{v}_{2}$, next by $-\delta \vec{v}_{1}$, finally by $-\delta \vec{v}_{2}$.
Keeping terms that are at most first order in $\delta \vec{v}_{1}$ or $\delta \vec{v}_{2}$ or both, show that the total transformation amounts to

$$
t \rightarrow t, \vec{r} \rightarrow \vec{r}+\overrightarrow{\delta \phi} \times \vec{r} \quad \text { or } \quad \delta t=0, \delta \vec{r}=\overrightarrow{\delta \phi} \times \vec{r}
$$

with $\overrightarrow{\delta \phi}=\frac{1}{c^{2}}\left(\delta \vec{v}_{1} \times \delta \vec{v}_{2}\right)$. What does the total transformation mean in geometrical terms?

Problem 2 (25 marks)
Exploit the definitions of $F^{\mu \nu}$ and $T^{\mu \nu}$ in (4.2.2) and (4.2.25), respectively, to verify the statement of (4.2.31) on page 52 of the notes, that is:

$$
\partial_{\nu} T^{\mu \nu}=-F^{\mu \nu} \frac{1}{c} j_{\nu} .
$$

Relate the right-hand side to the 4 -force density on page 29.

Problem 3 (25 marks)
A point charge $e$ is moving on a circle of radius $R$ with constant speed $v$, so that

$$
x(t)=R \cos (v t / R), y(t)=R \sin (v t / R), z(t)=0
$$

are the charge's cartesian coordinates as a function of time $t$. Find the retarded potentials for points on the $z$ axis. Which components of $\vec{E}(\vec{r}, t)$ and $\vec{B}(\vec{r}, t)$ can you infer from this limited knowledge of the potentials?

Problem 4 (25 marks)
A bit more realistic than the antenna model of Section 6.6 in the notes is the model defined by the electric current density

$$
\vec{j}(\vec{r}, t)=\vec{e}_{z} I \delta(x) \delta(y) \eta\left(L^{2}-4 z^{2}\right) \cos (\pi z / L) \cos (\omega t) .
$$

Find the corresponding charge density $\rho(\vec{r}, t)$. Then calculate the electric dipole moment $\vec{d}(t)$, the magnetic dipole moment $\vec{\mu}(t)$, and the electric quadrupole moment $\overleftrightarrow{Q}(t)$. Use them to determine the time-averaged total radiated power $\int \mathrm{d} \Omega \frac{\mathrm{d} P}{\mathrm{~d} \Omega}$ in accordance with the Larmor formula (6.3.16).

