1. Time-dependent Perturbation ($35=10+10+10+5$ marks)

A harmonic oscillator (mass M, angular frequency ω, position operator X, momentum operator P) is driven by a time-dependent force $F(t)$, so that the Hamilton operator is given by

$$
H=\frac{1}{2 M} P^{2}+\frac{1}{2} M \omega^{2} X^{2}-F(t) X
$$

whereby the force is only acting during the interval $0<t<T$, that is

$$
F(t)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{\prime}}{2 \pi} \mathrm{e}^{-\mathrm{i} \omega^{\prime} t} f\left(\omega^{\prime}\right)=\left\{\begin{array}{l}
0 \text { for } t<0 \text { and } t>T \\
\text { anything for } 0<t<T
\end{array}\right.
$$

(a) State the equations of motion for the ladder operators $A(t)$ and $A^{\dagger}(t)$ and solve them to express the operators at time $t=T$ in terms of those at time $t=0$.
(b) Next, establish that the transition amplitudes $\langle n, t=T \mid n=0, t=0\rangle$ from the oscillator ground state at $t=0$ to its nth excited state at $t=T$ are of the form

$$
\langle n, T \mid 0,0\rangle \propto\langle 0, T \mid 0,0\rangle f(\omega)^{n} .
$$

(c) Determine the ground-state persistence probability $p_{0}(T)=|\langle 0, T \mid 0,0\rangle|^{2}$ by a normalization argument, and then state explicitly the transition probabilities $p_{n}(T)=|\langle n, T \mid 0,0\rangle|^{2}$ for arbitrary n.
(d) Is it possible that a nonzero force has no net effect, that is: can you have $p_{0}(T)=1$ although $F(t) \neq 0$ for $0<t<T$?

2. Scattering ($35=10+10+10+5$ marks)

At very low energies, scattering is s-wave scattering only and the scattering amplitude $f\left(\vec{k}^{\prime}, \vec{k}\right)$ does not depend on the scattering angle θ.
(a) Show that

$$
f=-\frac{b(k)}{1+\mathrm{i} k b(k)} \quad \text { with } b(k) \text { real }
$$

under these circumstances. - Hint: Remember the Optical Theorem.
(b) How is $b(k)$ related to the s-wave scattering phase shift $\delta_{0}(k)$?
(c) The scattering length b_{0} is the $k \rightarrow 0$ limit of $b(k)$. Determine b_{0} for the repulsive hard-sphere potential

$$
V(r)=\left\{\begin{array}{cc}
\frac{(\hbar \kappa)^{2}}{2 M} & \text { for } r<a, \\
0 & \text { for } r>a,
\end{array}\right.
$$

with $\kappa>0$.
(d) What is $\left|b_{0}\right|$ for the Yukawa potential $V(r)=V_{0} \frac{\mathrm{e}^{-\kappa r}}{\kappa r}(\kappa>0)$ in Born approximation?

3. Angular Momentum ($30=10+15+5$ marks)

Consider three spin- $\frac{1}{2}$ systems with individual spin vector operators \vec{S}_{1}, \vec{S}_{2}, and \vec{S}_{3}, and total spin vector operator $\vec{S}=\vec{S}_{1}+\vec{S}_{2}+\vec{S}_{3}$. We denote by $|+-+\rangle$, for instance, the common eigenket of $S_{1 z}, S_{2 z}$, and $S_{3 z}$ with respective eigenvalues $\frac{1}{2} \hbar,-\frac{1}{2} \hbar$, and $\frac{1}{2} \hbar$.
(a) Show that the three kets $\left|\frac{1}{2} ; \nu\right\rangle$ that are defined, for $\nu=0, \pm 1$, by

$$
\left|\frac{1}{2} ; \nu\right\rangle=\frac{1}{\sqrt{3}}\left(|++-\rangle+|+-+\rangle q^{\nu}+|-++\rangle q^{-\nu}\right) \quad \text { with } q=\mathrm{e}^{\mathrm{i} 2 \pi / 3}
$$

are properly normalized, pairwise orthogonal eigenkets of S_{z} with eigenvalue $\frac{1}{2} \hbar$. - Note: Observe that $1+q+q^{2}=0$ and $q^{2}=q^{*}=q^{-1}$.
(b) Construct the corresponding kets $|m ; \nu\rangle$, for which $S_{z}|m ; \nu\rangle=|m ; \nu\rangle m \hbar$, by applying the ladder operators $S_{ \pm}=S_{x} \pm \mathrm{i} S_{y}$. State explicitly what you get for $\left|-\frac{1}{2} ; \nu\right\rangle$ and, if they exist, $\left| \pm \frac{3}{2} ; \nu\right\rangle$.
(c) What is the eigenvalue of \vec{S}^{2} for the set of kets with $\nu=0$; what is it for the sets with $\nu= \pm 1$?

