1. Time-dependent Perturbation (35=10+10+10+5 marks)

A harmonic oscillator (mass M, angular frequency ω , position operator X, momentum operator P) is driven by a time-dependent force F(t), so that the Hamilton operator is given by

$$H = \frac{1}{2M}P^2 + \frac{1}{2}M\omega^2 X^2 - F(t)X ,$$

whereby the force is only acting during the interval 0 < t < T, that is

$$F(t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega'}{2\pi} \,\mathrm{e}^{-\mathrm{i}\omega' t} f(\omega') = \begin{cases} 0 \text{ for } t < 0 \text{ and } t > T \,, \\ \text{anything for } 0 < t < T \,. \end{cases}$$

- (a) State the equations of motion for the ladder operators A(t) and $A^{\dagger}(t)$ and solve them to express the operators at time t = T in terms of those at time t = 0.
- (b) Next, establish that the transition amplitudes $\langle n, t = T | n = 0, t = 0 \rangle$ from the oscillator ground state at t = 0 to its *n*th excited state at t = T are of the form

$$\langle n, T | 0, 0 \rangle \propto \langle 0, T | 0, 0 \rangle f(\omega)^n$$

- (c) Determine the ground-state persistence probability $p_0(T) = |\langle 0, T | 0, 0 \rangle|^2$ by a normalization argument, and then state explicitly the transition probabilities $p_n(T) = |\langle n, T | 0, 0 \rangle|^2$ for arbitrary n.
- (d) Is it possible that a nonzero force has no net effect, that is: can you have $p_0(T) = 1$ although $F(t) \neq 0$ for 0 < t < T?

2. Scattering (35=10+10+10+5 marks)

At very low energies, scattering is s-wave scattering only and the scattering amplitude $f(\vec{k}', \vec{k})$ does not depend on the scattering angle θ .

(a) Show that

$$f = -\frac{b(k)}{1 + ikb(k)}$$
 with $b(k)$ real

under these circumstances. - Hint: Remember the Optical Theorem.

- (b) How is b(k) related to the s-wave scattering phase shift $\delta_0(k)$?
- (c) The scattering length b_0 is the $k \to 0$ limit of b(k). Determine b_0 for the repulsive hard-sphere potential

$$V(r) = \begin{cases} \ \frac{(\hbar \kappa)^2}{2M} \ \text{for} \ r < a \,, \\ 0 \ \ \text{for} \ r > a \,, \end{cases}$$

with $\kappa > 0$.

(d) What is $|b_0|$ for the Yukawa potential $V(r) = V_0 \frac{e^{-\kappa r}}{\kappa r}$ ($\kappa > 0$) in Born approximation?

3. Angular Momentum (30=10+15+5 marks)

Consider three spin- $\frac{1}{2}$ systems with individual spin vector operators \vec{S}_1 , \vec{S}_2 , and \vec{S}_3 , and total spin vector operator $\vec{S} = \vec{S}_1 + \vec{S}_2 + \vec{S}_3$. We denote by $|+-+\rangle$, for instance, the common eigenket of S_{1z} , S_{2z} , and S_{3z} with respective eigenvalues $\frac{1}{2}\hbar$, $-\frac{1}{2}\hbar$, and $\frac{1}{2}\hbar$.

(a) Show that the three kets $|\frac{1}{2};\nu\rangle$ that are defined, for $\nu = 0,\pm 1$, by

$$|\frac{1}{2};\nu\rangle = \frac{1}{\sqrt{3}} \left(|++-\rangle + |+-+\rangle q^{\nu} + |-++\rangle q^{-\nu} \right) \qquad \text{with } q = e^{i2\pi/3}$$

are properly normalized, pairwise orthogonal eigenkets of S_z with eigenvalue $\frac{1}{2}\hbar$. — Note: Observe that $1 + q + q^2 = 0$ and $q^2 = q^* = q^{-1}$.

- (b) Construct the corresponding kets $|m;\nu\rangle$, for which $S_z|m;\nu\rangle = |m;\nu\rangle m\hbar$, by applying the ladder operators $S_{\pm} = S_x \pm iS_y$. State explicitly what you get for $|-\frac{1}{2};\nu\rangle$ and, if they exist, $|\pm\frac{3}{2};\nu\rangle$.
- (c) What is the eigenvalue of \vec{S}^2 for the set of kets with $\nu = 0$; what is it for the sets with $\nu = \pm 1$?