Problem 1 (30 marks)
Mass M moves along the x axis. The Hamilton operator

$$
H(X, P)=H_{0}+H_{1} \quad \text { with } \quad H_{0}=\frac{1}{2 M} P^{2} \quad \text { and } \quad H_{1}=E_{0} \cos (k X)
$$

governs the evolution, whereby energy E_{0} and wave number k are positive constants. Find the scattering operator

$$
S(T)=\mathrm{e}^{\mathrm{i} H_{0} T / \hbar} \mathrm{e}^{-\mathrm{i} H T / \hbar}
$$

to first order in E_{0}. It suffices to state the X, P-ordered version of $S(T)$.
Problem 2 (25 marks)
The one-dimensional dynamics of a particle of mass M is controlled by the Hamilton operator

$$
H(X, P, t)=\frac{1}{2 M} P^{2}-\frac{\hbar^{2} \kappa(t)}{M} \delta(X)
$$

which has a parametric time dependence that originates in the time-dependent parameter $\kappa(t)>0$. Before $t=0, \kappa(t)$ has the constant value κ_{1}; after $t=T>0$, it has the constant value κ_{2}. Between $t=0$ and $t=T$, the value of $\kappa(t)$ changes very slowly. Given that the system is in its ground state at $t=0$, what is the probability that it is still in the same state at $t=T$?

Problem 3 (20 marks)
Mass M is moving along the x axis, with the Hamilton operator

$$
H(X, P, t)=\frac{1}{2 M} P^{2}+V(X, t)
$$

governing the evolution, whereby $V(X, t)$ is an unknown potential energy that could have a parametric time dependence. The position wave function is of the form

$$
\psi(x, t)=\left(\alpha+\beta x \mathrm{e}^{-\mathrm{i} \omega t}\right) \mathrm{e}^{-\frac{1}{2}(x / a)^{2}}
$$

with constant parameters α, β, ω, and $a>0$. Which relation among these parameters is implied by the normalization of $\psi(x, t)$? How are ω and a related to each other? - Hint: Remember the continuity equation.

Problem 4 (25 marks)
A particle with mass M and energy $(\hbar k)^{2} /(2 M)$ is scattered by the spherically symmetric potential

$$
V(r)=V_{0} \mathrm{e}^{-r / a}
$$

with $a>0$. Find the differential scattering cross section $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ and the total cross section σ in first-order Born approximation. What is the $k \rightarrow 0$ limit of $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$?

