Problem 1 ($35=7+8+10+5+5$ marks)
As in lecture, operators U and V are the standard complementary pair of cyclic unitary operators of period N for an N-dimensional quantum degree of freedom, and their eigenkets are denoted by $\left|u_{k}\right\rangle$ and $\left|v_{l}\right\rangle$, respectively, for $k, l=1,2, \ldots, N$, with $u_{k}=\mathrm{e}^{\mathrm{i} 2 \pi k / N}$ and $v_{l}=\mathrm{e}^{\mathrm{i} 2 \pi l / N}$.
(a) Show that $(U V)^{N}=(-1)^{N-1}$.
(b) More generally, what do you get for $\left(U^{m} V^{n}\right)^{N}$?
(c) Unitary operator S is defined by $S\left|v_{k}\right\rangle=\left|u_{k}\right\rangle$ for $k=1,2, \ldots, N$. Find

$$
\left\langle u_{k}\right| S, \quad S\left|u_{k}\right\rangle, \quad \text { and } \quad\left\langle v_{k}\right| S .
$$

(d) Show that $U S=S V$.
(e) Show that S is a cyclic operator. What is its period?

Hint: Consider $N=2$ and $N>2$ separately.

Problem 2 ($25=10+15$ marks)
Mass M moves along the x axis whereby the Hamilton operator

$$
H=v|P|-F X \quad \text { with constant } v \text { and constant } F
$$

governs the evolution. The time transformation function $\left\langle x, t_{1} \mid p, t_{2}\right\rangle$ depends on the size of the velocity v and the strength of the force F.
(a) Use the Schrödinger equation to find $\left\langle x, t_{1} \mid p, t_{2}\right\rangle$ in the case of $v=0$.
(b) Use the quantum action principle to determine the v dependence of $\left\langle x, t_{1} \mid p, t_{2}\right\rangle$ and thus obtain this time transformation function for arbitrary values of v and F.
Hint: $\frac{\mathrm{d}}{\mathrm{d} y}(y|y|)=2|y|$.

Problem 3 ($40=15+10+7+8$ marks)
We consider two hermitian operators, Θ and Λ. The eigenvalues ϑ of operator Θ are in the range $0<\vartheta<\pi$; the eigenvalues λ of operator Λ are all real numbers: $-\infty<\gamma<\infty$; and their eigenstates are related by

$$
\langle\vartheta \mid \lambda\rangle=\frac{1}{\sqrt{2 \pi}}\left(\tan \frac{\vartheta}{2}\right)^{\mathrm{i} \lambda},
$$

whereby

$$
\left\langle\vartheta \mid \vartheta^{\prime}\right\rangle=\delta\left(\vartheta-\vartheta^{\prime}\right) \sin \vartheta, \quad\left\langle\lambda \mid \lambda^{\prime}\right\rangle=\delta\left(\lambda-\lambda^{\prime}\right)
$$

are the respective orthonormality statements.
(a) Evaluate $\int_{0}^{\pi} \frac{\mathrm{d} \vartheta}{\sin \vartheta}\langle\lambda \mid \vartheta\rangle\left\langle\vartheta \mid \lambda^{\prime}\right\rangle$ and $\int_{-\infty}^{\infty} \mathrm{d} \lambda\langle\vartheta \mid \lambda\rangle\left\langle\lambda \mid \vartheta^{\prime}\right\rangle$ to establish the completeness relations

$$
\int_{0}^{\pi} \frac{\mathrm{d} \vartheta}{\sin \vartheta}|\vartheta\rangle\langle\vartheta|=1, \quad \int_{-\infty}^{\infty} \mathrm{d} \lambda|\lambda\rangle\langle\lambda|=1 .
$$

(b) Show that

$$
\left(\tan \frac{\Theta}{2}\right)^{\mathrm{i} \lambda^{\prime}}|\lambda\rangle=\left|\lambda+\lambda^{\prime}\right\rangle
$$

for all real numbers λ and λ^{\prime}.
(c) Use this to demonstrate that

$$
\mathrm{e}^{\mathrm{i} \mu \Lambda}\left(\tan \frac{\Theta}{2}\right)^{\mathrm{i} \lambda}=\mathrm{e}^{\mathrm{i} \mu \lambda}\left(\tan \frac{\Theta}{2}\right)^{\mathrm{i} \lambda} \mathrm{e}^{\mathrm{i} \mu \Lambda}
$$

for all real numbers μ and λ.
(d) How is ϑ^{\prime} related to ϑ and μ in $\left\langle\vartheta^{\prime}\right|=\langle\vartheta| \mathrm{e}^{\mathrm{i} \mu \Lambda}$?

