Problem 1 (35=7+8+10+5+5 marks)

As in lecture, operators U and V are the standard complementary pair of cyclic unitary operators of period N for an N-dimensional quantum degree of freedom, and their eigenkets are denoted by $|u_k\rangle$ and $|v_l\rangle$, respectively, for k, l = 1, 2, ..., N, with $u_k = e^{i2\pi k/N}$ and $v_l = e^{i2\pi l/N}$.

- (a) Show that $(UV)^N = (-1)^{N-1}$.
- (b) More generally, what do you get for $\left(U^mV^n\right)^N$?
- (c) Unitary operator S is defined by $S|v_k\rangle = |u_k\rangle$ for k = 1, 2, ..., N. Find

$$\langle u_k | S, S | u_k \rangle$$
, and $\langle v_k | S.$

- (d) Show that US = SV.
- (e) Show that S is a cyclic operator. What is its period? Hint: Consider N = 2 and N > 2 separately.

Problem 2 (25=10+15 marks)

Mass M moves along the x axis whereby the Hamilton operator

$$H = v |P| - FX$$
 with constant v and constant F

governs the evolution. The time transformation function $\langle x, t_1 | p, t_2 \rangle$ depends on the size of the velocity v and the strength of the force F.

- (a) Use the Schrödinger equation to find $\langle x, t_1 | p, t_2 \rangle$ in the case of v = 0.
- (b) Use the quantum action principle to determine the v dependence of $\langle x, t_1 | p, t_2 \rangle$ and thus obtain this time transformation function for arbitrary values of v and F. Hint: $\frac{d}{dy}(y|y|) = 2|y|$.

Problem 3 (40=15+10+7+8 marks)

We consider two hermitian operators, Θ and Λ . The eigenvalues ϑ of operator Θ are in the range $0 < \vartheta < \pi$; the eigenvalues λ of operator Λ are all real numbers: $-\infty < \gamma < \infty$; and their eigenstates are related by

$$\langle \vartheta | \lambda \rangle = \frac{1}{\sqrt{2\pi}} \left(\tan \frac{\vartheta}{2} \right)^{\mathrm{i}\lambda},$$

whereby

$$\left\langle \vartheta \middle| \vartheta' \right\rangle = \delta(\vartheta - \vartheta') \sin \vartheta, \qquad \left\langle \lambda \middle| \lambda' \right\rangle = \delta(\lambda - \lambda')$$

are the respective orthonormality statements.

<

(a) Evaluate $\int_0^{\pi} \frac{\mathrm{d}\vartheta}{\sin\vartheta} \langle \lambda | \vartheta \rangle \langle \vartheta | \lambda' \rangle$ and $\int_{-\infty}^{\infty} \mathrm{d}\lambda \langle \vartheta | \lambda \rangle \langle \lambda | \vartheta' \rangle$ to establish the completeness relations

$$\int_0^{\pi} \frac{\mathrm{d}\vartheta}{\sin\vartheta} \left|\vartheta\right\rangle \left\langle\vartheta\right| = 1, \qquad \int_{-\infty}^{\infty} \mathrm{d}\lambda \left|\lambda\right\rangle \left\langle\lambda\right| = 1.$$

(b) Show that

$$\left(\tan\frac{\Theta}{2}\right)^{\lambda'} \left|\lambda\right\rangle = \left|\lambda + \lambda'\right\rangle$$

for all real numbers λ and λ' .

(c) Use this to demonstrate that

$$e^{i\mu\Lambda} \left(\tan\frac{\Theta}{2}\right)^{i\lambda} = e^{i\mu\lambda} \left(\tan\frac{\Theta}{2}\right)^{i\lambda} e^{i\mu\Lambda}$$

for all real numbers μ and λ .

(d) How is ϑ' related to ϑ and μ in $\langle \vartheta' | = \langle \vartheta | e^{i\mu\Lambda}$?