1. Calculus of Variations (15 marks)

What is the smallest value you can get for the integral

$$\int_{1}^{\infty} \mathrm{d}x \, \left[\left(\frac{\mathrm{d}}{\mathrm{d}x} f(x) \right)^{2} + \frac{5f(x)^{3}}{2\sqrt{x}} \right]$$

if f(x) is restricted by f(1) = 1 and $f(x) \to 0$ for $x \to \infty$? — Hint: If you should need to solve a 2nd-order differential equation, it would have a very simple solution that you would be able to guess.

2. Group Theory (30=15+10+5 marks)

The eight elements of group G are mappings of complex numbers, among them E, A, and B, which are given by

$$E: z \mapsto E(z) = z, \qquad A: z \mapsto A(z) = z^*, \qquad B: z \mapsto B(z) = iz.$$

The group composition law is illustrated by

$$AB: z \mapsto A(B(z)) = (iz)^* = -iz^*, \qquad BA: z \mapsto B((A(z)) = iz^*.$$

(a) Complete the group composition table:

	E	A	B	B^2	B^3	AB	AB^2	AB^3
E	E	A	В	B^2	B^3	AB	AB^2	AB^3
A	A		AB	AB^2	AB^3			
В	В		B^2	B^3				
B^2	B^2		B^3					
B^3	B^3							
AB	AB		AB^2	AB^3				
AB^2	AB^2		AB^3					
AB^3	AB^3							

- (b) Give a complete list of all subgroups with two elements or four elements.
- (c) Which of these subgroups are abelian?

3. Laplace Transform (20 marks)

Use Laplace transform techniques to find the function f(t) that obeys

$$f(t) - t\frac{\mathrm{d}}{\mathrm{d}t}f(t) = 2\int_0^t \mathrm{d}t' f(t')f(t-t') \quad \text{and} \quad \int_0^\infty \frac{\mathrm{d}t}{t} f(t) = \pi \,.$$

4. Complex Calculus (35=7+10+10+8 marks)

In order to give a unique meaning to the function $f(z) = (z^2 - 1)^{\frac{1}{2}}$ of the complex variable z = x + iy, we choose the cut along the real axis from z = -1 to z = 1 and define

$$\begin{split} f(z) &= (z^2 - 1)^{\frac{1}{2}} = \sinh \theta \cos \phi + \mathrm{i} \cosh \theta \sin \phi \\ & \text{for} \quad z = \cosh \theta \cos \phi + \mathrm{i} \sinh \theta \sin \phi \qquad \text{with} \quad \theta > 0 \,, \end{split}$$

which is such that $f(z)/z \to 1$ for $|z| \to \infty$.

- (a) Verify that $f(z)^2 + 1 = z^2$.
- (b) For $z_0 = x_0$ with $|x_0| < 1$, what is the limit of $f(z_0 + i\epsilon) f(z_0 i\epsilon)$ for $0 < \epsilon \to 0$?
- (c) Evaluate $\int_{\mathcal{C}} dz f(z)$ where \mathcal{C} is the closed curve that is obtained when ϕ covers the range from $\phi = 0$ to $\phi = 2\pi$ for a fixed value of θ .
- (d) For |z| > 1 give an alternative definition of f(z) in terms of its Laurent expansion around z = 0. Confirm that the residue has the value implied by the result of part (c).