Problem 1 (25 marks)

The two 2×2 matrices

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad R = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$

are elements of a matrix group with just a few group elements. By considering S^{-1} , R^{-1} , S^2 , SR, RS, R^2 , ..., find the other group elements. Is the group abelian? If it isn't, identify the abelian subgroups.

Problem 2 (25 marks)

The set G consists of all complex 2×2 matrices $M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$ whose matrix elements are restricted by the relations

$$|M_{11}|^2 = |M_{22}|^2 = 1 + |M_{12}|^2 = 1 + |M_{21}|^2, \qquad M_{21}^*M_{11} = M_{12}M_{22}^*$$

Demonstrate that $M_{11}^*M_{12} = M_{22}M_{21}^*$, and then show that G is a group with matrix multiplication as the group composition law.

Problem 3 (25 marks)

Function f(t) obeys the differential equation

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} - 3\frac{\mathrm{d}}{\mathrm{d}t} + 2\right)f(t) = 2$$

and has the t = 0 values f(0) = 1 and $\frac{df}{dt}(0) = 2$. First find the Laplace transform F(s) of f(t), and then f(t) itself.

Problem 4 (25 marks)

Consider the family of functions $f_1(t), f_2(t), \ldots$ that are defined by

$$f_n(t) = \frac{1}{n!} \frac{n}{T} \left(\frac{nt}{T}\right)^n e^{-nt/T}$$
 with $T > 0$.

In order to determine the $n \to \infty$ limit of $f_n(t)$, first find the Laplace transform $F_n(s)$ of $f_n(t)$, then evaluate $F_{\infty}(s) = \lim_{n \to \infty} F_n(s)$, and finally establish $f_{\infty}(t) = \lim_{n \to \infty} f_n(t)$.