Problem 1 (25 marks)
The two 2×2 matrices

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad R=\frac{1}{2}\left(\begin{array}{cc}
-1 & -\sqrt{3} \\
\sqrt{3} & -1
\end{array}\right)
$$

are elements of a matrix group with just a few group elements. By considering S^{-1}, $R^{-1}, S^{2}, S R, R S, R^{2}, \ldots$, find the other group elements. Is the group abelian? If it isn't, identify the abelian subgroups.

Problem 2 (25 marks)
The set G consists of all complex 2×2 matrices $M=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$ whose matrix elements are restricted by the relations

$$
\left|M_{11}\right|^{2}=\left|M_{22}\right|^{2}=1+\left|M_{12}\right|^{2}=1+\left|M_{21}\right|^{2}, \quad M_{21}^{*} M_{11}=M_{12} M_{22}^{*}
$$

Demonstrate that $M_{11}^{*} M_{12}=M_{22} M_{21}^{*}$, and then show that G is a group with matrix multiplication as the group composition law.

Problem 3 (25 marks)
Function $f(t)$ obeys the differential equation

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}-3 \frac{\mathrm{~d}}{\mathrm{~d} t}+2\right) f(t)=2
$$

and has the $t=0$ values $f(0)=1$ and $\frac{\mathrm{d} f}{\mathrm{~d} t}(0)=2$. First find the Laplace transform $F(s)$ of $f(t)$, and then $f(t)$ itself.

Problem 4 (25 marks)
Consider the family of functions $f_{1}(t), f_{2}(t), \ldots$ that are defined by

$$
f_{n}(t)=\frac{1}{n!} \frac{n}{T}\left(\frac{n t}{T}\right)^{n} \mathrm{e}^{-n t / T} \quad \text { with } T>0
$$

In order to determine the $n \rightarrow \infty$ limit of $f_{n}(t)$, first find the Laplace transform $F_{n}(s)$ of $f_{n}(t)$, then evaluate $F_{\infty}(s)=\lim _{n \rightarrow \infty} F_{n}(s)$, and finally establish $f_{\infty}(t)=\lim _{n \rightarrow \infty} f_{n}(t)$.

