Problem 1 (25 marks)
What is the smallest value that you can get for

$$
\int_{0}^{\infty} \mathrm{d} x\left(\left[\frac{\mathrm{~d}}{\mathrm{~d} x} y(x)\right]^{2}+[y(x)]^{3}\right)
$$

if the permissible $y(x)$ are such that $y(0)=1$ and $y(x) \rightarrow 0$ for $x \rightarrow \infty$?

Problem 2 (30 marks)
Mass m is moving without friction on the surface specified by $z=\sqrt{x^{2}+y^{2}+a^{2}}$ with $a>0$, while the gravitational force $m \boldsymbol{g}=-m g \boldsymbol{e}_{3} \hat{=}(0,0,-m g)$ is acting. Find the Lagrange function $L(\zeta, \varphi, \dot{\zeta}, \dot{\varphi})$ where x and y are related to the coordinates ζ, φ by

$$
x=a \sinh \zeta \cos \varphi, \quad y=a \sinh \zeta \sin \varphi
$$

with $\zeta \geq 0$. Then determine the corresponding Hamilton function and state the Hamilton equations of motion.

Problem 3 (15 marks)
The phase space density $\rho(x, p, t)$ obeys the Liouville equation to a certain Hamilton function $H(x, p, t)$. Show that

$$
\int \mathrm{d} x \mathrm{~d} p \rho(x, p, t)
$$

does not depend on time t, whereby the integration covers the whole phase space.

Problem 4 (30 marks)
Function $\mathrm{z}(x, y)$ obeys the quasi-linear partial differential equation (qIPDE)

$$
\left[(x+z) \frac{\partial}{\partial x}+2 \frac{\partial}{\partial y}\right] z=0 .
$$

Determine the solution of this qIPDE for $\mathrm{z}(x, 0)=x$.

