Problem 1 (25 marks)

What is the smallest value that you can get for

$$\int_0^\infty \mathrm{d}x \, \left(\left[\frac{\mathrm{d}}{\mathrm{d}x} y(x) \right]^2 + [y(x)]^3 \right)$$

if the permissible y(x) are such that y(0) = 1 and $y(x) \to 0$ for $x \to \infty$?

Problem 2 (30 marks)

Mass m is moving without friction on the surface specified by $z = \sqrt{x^2 + y^2 + a^2}$ with a > 0, while the gravitational force $mg = -mge_3 \triangleq (0, 0, -mg)$ is acting. Find the Lagrange function $L(\zeta, \varphi, \dot{\zeta}, \dot{\varphi})$ where x and y are related to the coordinates ζ, φ by

$$x = a \sinh \zeta \cos \varphi, \qquad y = a \sinh \zeta \sin \varphi$$

with $\zeta \geq 0.$ Then determine the corresponding Hamilton function and state the Hamilton equations of motion.

Problem 3 (15 marks)

The phase space density $\rho(x, p, t)$ obeys the Liouville equation to a certain Hamilton function H(x, p, t). Show that

$$\int \mathrm{d}x \,\mathrm{d}p \,\rho(x,p,t)$$

does not depend on time t, whereby the integration covers the whole phase space.

Problem 4 (30 marks)

Function z(x, y) obeys the quasi-linear partial differential equation (qIPDE)

$$\left[(x+\mathbf{z})\frac{\partial}{\partial x} + 2\frac{\partial}{\partial y} \right] \mathbf{z} = 0 \,.$$

Determine the solution of this qIPDE for z(x, 0) = x.