Problem 1 (10+15+5=30 marks)

As usual, we denote by A, A^{\dagger} the ladder operators of the harmonic oscillator, and by ω its circular frequency. In this problem we consider the dynamics governed by the Hamilton operator

$$H = \hbar\omega (A^{\dagger} - \alpha^*)(A - \alpha),$$

where α is a complex constant.

- (a) State the equations of motion obeyed by A(t) and $A^{\dagger}(t)$ and solve them.
- (b) Find the time transformation function $\langle a^*, t | a', t_0 \rangle$. Hint: What is its t derivative?
- (c) If the system is in the n = 0 Fock state at time t_0 , what is the probability of finding the system in the n = 0 Fock state at time t?

Problem 2 (10 marks)

Three dimensions: position vector operator \vec{R} , momentum vector operator \vec{P} , orbital angular momentum vector operator $\vec{L} = \vec{R} \times \vec{P}$. — A vector operator \vec{F} is given by $\vec{F} = p\vec{R} + x\vec{P} + \vec{L}$, where p and x are numerical parameters. Express $\vec{F} \times \vec{F}$ as a linear combination of \vec{R} , \vec{P} , and \vec{L} .

Problem 3 (5+20=25 marks)

Orbital angular momentum vector operator \vec{L} with cartesian components L_1 , L_2 , and L_3 ; as usual, $|l,m\rangle$ is a joint eigenket of \vec{L}^2 and L_3 . — The system is in the l = 2 state described by the ket

$$|\rangle = |2,2\rangle x + |2,0\rangle y + |2,-2\rangle x$$

with real coefficients x and y.

- (a) Which statement about x and y follows from the normalization $\langle | \rangle = 1$?
- (b) Determine the spreads δL_1 , δL_2 , and δL_3 . Hint: $\delta L_2 = 0$ and $\delta L_1 = \delta L_3$ for $x = \sqrt{\frac{3}{8}}$, $y = \frac{1}{2}$.

Problem 4 (15 marks)

For hydrogenic atoms with Hamilton operator $H = \frac{\vec{P}^2}{2M} - \frac{Ze^2}{|\vec{R}|}$ show that

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{|\vec{R}|} = -\frac{1}{2}\left(\frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\cdot\frac{\vec{R}}{|\vec{R}|^3} + \frac{\vec{R}}{|\vec{R}|^3}\cdot\frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\right)$$

Problem 5 (20 marks)

A harmonic oscillator (Hamilton operator $H_0 = \hbar \omega A^{\dagger} A$) is perturbed by $H_1 = \lambda D^{\dagger} D$ with $D = 1 + (AA^{\dagger})^{-1/2} A$, so that the *n*th eigenvalue $E_n(\lambda)$ of $H = H_0 + H_1$ is a function of the real strength parameter λ . Of course, we have the unperturbed energies $E_n(\lambda = 0) = n\hbar\omega$ with $n = 0, 1, 2, \ldots$ — Find $\frac{\mathrm{d}}{\mathrm{d}\lambda}E_n(\lambda)\Big|_{\lambda = 0}$.