Problem 1 ($10+15+5=30$ marks)
As usual, we denote by A, A^{\dagger} the ladder operators of the harmonic oscillator, and by ω its circular frequency. In this problem we consider the dynamics governed by the Hamilton operator

$$
H=\hbar \omega\left(A^{\dagger}-\alpha^{*}\right)(A-\alpha),
$$

where α is a complex constant.
(a) State the equations of motion obeyed by $A(t)$ and $A^{\dagger}(t)$ and solve them.
(b) Find the time transformation function $\left\langle a^{*}, t \mid a^{\prime}, t_{0}\right\rangle$.

Hint: What is its t derivative?
(c) If the system is in the $n=0$ Fock state at time t_{0}, what is the probability of finding the system in the $n=0$ Fock state at time t ?

Problem 2 (10 marks)

Three dimensions: position vector operator \vec{R}, momentum vector operator \vec{P}, orbital angular momentum vector operator $\vec{L}=\vec{R} \times \vec{P}$. - A vector operator \vec{F} is given by $\vec{F}=p \vec{R}+x \vec{P}+\vec{L}$, where p and x are numerical parameters. Express $\vec{F} \times \vec{F}$ as a linear combination of \vec{R}, \vec{P}, and \vec{L}.

Problem 3 ($5+20=25$ marks)
Orbital angular momentum vector operator \vec{L} with cartesian components L_{1}, L_{2}, and L_{3}; as usual, $|l, m\rangle$ is a joint eigenket of \vec{L}^{2} and L_{3}. - The system is in the $l=2$ state described by the ket

$$
\rangle=| 2,2\rangle x+|2,0\rangle y+|2,-2\rangle x
$$

with real coefficients x and y.
(a) Which statement about x and y follows from the normalization $\langle\mid\rangle=1$?
(b) Determine the spreads $\delta L_{1}, \delta L_{2}$, and δL_{3}.

Hint: $\delta L_{2}=0$ and $\delta L_{1}=\delta L_{3}$ for $x=\sqrt{\frac{3}{8}}, y=\frac{1}{2}$.
Problem 4 (15 marks)
For hydrogenic atoms with Hamilton operator $H=\frac{\vec{P}^{2}}{2 M}-\frac{Z e^{2}}{|\vec{R}|}$ show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{|\vec{R}|}=-\frac{1}{2}\left(\frac{\mathrm{~d} \vec{R}}{\mathrm{~d} t} \cdot \frac{\vec{R}}{|\vec{R}|^{3}}+\frac{\vec{R}}{|\vec{R}|^{3}} \cdot \frac{\mathrm{~d} \vec{R}}{\mathrm{~d} t}\right) .
$$

Problem 5 (20 marks)
A harmonic oscillator (Hamilton operator $H_{0}=\hbar \omega A^{\dagger} A$) is perturbed by $H_{1}=\lambda D^{\dagger} D$ with $D=1+\left(A A^{\dagger}\right)^{-1 / 2} A$, so that the nth eigenvalue $E_{n}(\lambda)$ of $H=H_{0}+H_{1}$ is a function of the real strength parameter λ. Of course, we have the unperturbed energies $E_{n}(\lambda=0)=n \hbar \omega$ with $n=0,1,2, \ldots$. Find $\left.\frac{\mathrm{d}}{\mathrm{d} \lambda} E_{n}(\lambda)\right|_{\lambda=0}$.

