Problem 1 (5+15+10=30 marks)

The system is in the state described by the position wave function $\psi(x) = \langle x | \rangle$. We consider the function f(a) of the real length parameter a that is defined by

$$f(a) = \int_{-\infty}^{\infty} \mathrm{d}x \ \psi(x-a)^* \,\psi(x+a) \,,$$

the so-called "auto-correlation function."

- (a) How is f(-a) related to f(a)?
- (b) Find the operator $W_a(X, P)$, for which $f(a) = \langle |W_a(X, P)| \rangle$. State $W_a(X, P)$ explicitly as a function of position operator X and momentum operator P.
- (c) What is the momentum spread δP if $f(a) = [1 + (ka)^2]^{-2}$ with k > 0?

Problem 2 (20 marks)

The X, P-ordered form of operator $Z = e^{iX; P/\hbar}$ is an ordered exponential function. What is the P, X-ordered form of Z?

Problem 3 (20 marks)

For given x', p', x'', and p'', determine x, p, and ϕ such that

$$\mathrm{e}^{\mathrm{i}(x'P - p'X)/\hbar} \,\mathrm{e}^{\mathrm{i}(x''P - p''X)/\hbar} = \mathrm{e}^{\mathrm{i}(xP - pX)/\hbar} \,\mathrm{e}^{\mathrm{i}\phi}$$

holds.

Problem 4 (10 marks)

The state of a particle moving along the x axis is specified by the statistical operator $\rho(X, P)$. Evaluate

$$\operatorname{tr}\left\{X\frac{\partial\rho}{\partial X}\right\}$$
 and $\operatorname{tr}\left\{P\frac{\partial\rho}{\partial P}\right\}$.

Hint: The answers do not depend on the particular choice for $\rho(X, P)$.

Problem 5 (10+10=20 marks)

Consider motion along the x axis with the dynamics governed by the Hamilton operator $H = \gamma(XP + PX)$ with $\gamma > 0$.

- (a) State and solve Heisenberg's equations of motion for X(t) and P(t).
- (b) Then determine the total time derivative $\frac{d}{dt}F$ and the parametric time derivative $\frac{\partial}{\partial t}F$ of $F = X(t_1)P(t_2)X(t_1)$, where t_1 and t_2 are two arbitrary instants.