Problem 1 ( $5+15+10=30$ marks)
The system is in the state described by the position wave function $\psi(x)=\langle x \mid\rangle$. We consider the function $f(a)$ of the real length parameter $a$ that is defined by

$$
f(a)=\int_{-\infty}^{\infty} \mathrm{d} x \psi(x-a)^{*} \psi(x+a),
$$

the so-called "auto-correlation function."
(a) How is $f(-a)$ related to $f(a)$ ?
(b) Find the operator $W_{a}(X, P)$, for which $f(a)=\langle | W_{a}(X, P)| \rangle$. State $W_{a}(X, P)$ explicitly as a function of position operator $X$ and momentum operator $P$.
(c) What is the momentum spread $\delta P$ if $f(a)=\left[1+(k a)^{2}\right]^{-2}$ with $k>0$ ?

Problem 2 (20 marks)
The $X, P$-ordered form of operator $Z=\mathrm{e}^{\mathrm{i} X ; P / \hbar}$ is an ordered exponential function. What is the $P, X$-ordered form of $Z$ ?

Problem 3 (20 marks)
For given $x^{\prime}, p^{\prime}, x^{\prime \prime}$, and $p^{\prime \prime}$, determine $x, p$, and $\phi$ such that

$$
\mathrm{e}^{\mathrm{i}\left(x^{\prime} P-p^{\prime} X\right) / \hbar} \mathrm{e}^{\mathrm{i}\left(x^{\prime \prime} P-p^{\prime \prime} X\right) / \hbar}=\mathrm{e}^{\mathrm{i}(x P-p X) / \hbar} \mathrm{e}^{\mathrm{i} \phi}
$$

holds.

Problem 4 (10 marks)
The state of a particle moving along the $x$ axis is specified by the statistical operator $\rho(X, P)$. Evaluate

$$
\operatorname{tr}\left\{X \frac{\partial \rho}{\partial X}\right\} \quad \text { and } \operatorname{tr}\left\{P \frac{\partial \rho}{\partial P}\right\} .
$$

Hint: The answers do not depend on the particular choice for $\rho(X, P)$.

Problem 5 ( $10+10=20$ marks)
Consider motion along the $x$ axis with the dynamics governed by the Hamilton operator $H=\gamma(X P+P X)$ with $\gamma>0$.
(a) State and solve Heisenberg's equations of motion for $X(t)$ and $P(t)$.
(b) Then determine the total time derivative $\frac{\mathrm{d}}{\mathrm{d} t} F$ and the parametric time derivative $\frac{\partial}{\partial t} F$ of $F=X\left(t_{1}\right) P\left(t_{2}\right) X\left(t_{1}\right)$, where $t_{1}$ and $t_{2}$ are two arbitrary instants.

