1. Commutation Relations (10 marks)

Express the commutator $\left[A, B^{-1}\right]$ in terms of $[A, B]$, whereby operator A is arbitrary and operator B is invertible.

2. Time-dependent Perturbation ($25=15+10$ marks)

The Hamilton operator

$$
H=\hbar \omega A^{\dagger} A-\hbar \Omega(t)^{*} A-\hbar \Omega(t) A^{\dagger}
$$

describes a harmonic oscillator (circular frequency ω, ladder operators A^{\dagger}, A) that is driven by the time-dependent coupling $\hbar \Omega(t)$ which increases slowly from its initial value $\Omega(t<0)=0$ to its final value $\Omega(t>T)=\Omega_{\infty}$. Before the drive is applied, the oscillator is in its ground state.
(a) What is the probability of finding the oscillator at time $t=T$ in this ground state, namely the ground state to $\Omega=0$?
(b) What is the probability of finding the oscillator at time $t=T$ in the first excited state to $\Omega=0$?
Hint: It may be helpful to recall the normally ordered form of the projector to the oscillator ground state.

3. Scattering (20 marks)

If $\frac{\mathrm{d} \sigma_{1}}{\mathrm{~d} \Omega}$ is the differential scattering cross section to the localized scattering potential $V_{1}(\vec{R})$, what is the differential scattering cross section $\frac{\mathrm{d} \sigma_{2}}{\mathrm{~d} \Omega}$ to the scattering potential $V_{2}(\vec{R})=V_{1}(\vec{R}-\vec{a})$, where \vec{a} is a numerical displacement vector? Justify your answer.
Note: Full marks will be earned only by answers that do not invoke an approximation, such as the Born approximation.

4. Scattering ($\mathbf{2 0 = 8 + 1 2}$ marks)

The scattering potential in $H=\frac{1}{2 M} \vec{P}^{2}+V$ is the sum of two separable potentials,

$$
V=\left|s_{1}\right\rangle V_{1}\left\langle s_{1}\right|+\left|s_{2}\right\rangle V_{2}\left\langle s_{2}\right|,
$$

where V_{1} and V_{2} are real parameters and the kets $\left|s_{1}\right\rangle,\left|s_{2}\right\rangle$ are orthonormal: $\left\langle s_{1} \mid s_{1}\right\rangle=\left\langle s_{2} \mid s_{2}\right\rangle=1$ and $\left\langle s_{1} \mid s_{2}\right\rangle=0$.
(a) Explain why the transition operator has the form

$$
T=\left|s_{1}\right\rangle T_{11}\left\langle s_{1}\right|+\left|s_{1}\right\rangle T_{12}\left\langle s_{2}\right|+\left|s_{2}\right\rangle T_{21}\left\langle s_{1}\right|+\left|s_{2}\right\rangle T_{22}\left\langle s_{2}\right| .
$$

(b) Determine the values of $T_{11}, T_{12}, T_{21}, T_{22}$.

5. Angular Momentum ($25=10+10+5$ marks)

An unstable molecule is in the angular momentum state with $j=1$ and $m=0$ and decays spontaneously into two fragments with $j_{1}=\frac{3}{2}$ and $j_{2}=\frac{1}{2}$.
(a) What are the probabilities of finding the first fragment with $m_{1}=\frac{3}{2}, m_{1}=\frac{1}{2}$, $m_{1}=-\frac{1}{2}$, or $m_{1}=-\frac{3}{2}$, respectively?
(b) What are the probabilities of finding the second fragment with $m_{2}=\frac{1}{2}$ or $m_{2}=-\frac{1}{2}$, respectively?
(c) What is the joint probability of finding the first fragment with $m_{1}=\frac{1}{2}$ and the second fragment with $m_{2}=-\frac{1}{2}$?

