Problem 1 (15=9+6 points)
Operator A has three different eigenvalues: $a_{1}=1, a_{2}=2, a_{3}=4$.
(a) Write the projection operators $\left|a_{j}\right\rangle\left\langle a_{j}\right|=\delta\left(A, a_{j}\right)(j=1,2,3)$ as polynomials in A of the lowest possible degree.
(b) Write the operator function $f(A)=\log _{2} A$ as a polynomial in A of the lowest possible degree.

Problem 2 ($35=15+5+10+5$ points)
Operators U and V are two cyclic unitary operators of period N for an N-dimensional quantum degree of freedom.
(a) We know from the lecture and the tutorials that, for all integer values of n and m,

$$
\operatorname{tr}\left\{U^{m} V^{n}\right\}= \begin{cases}N & \text { if } U^{m}=1 \text { and } V^{n}=1, \tag{}\\ 0 & \text { otherwise }\end{cases}
$$

if U and V are a pair of complementary observables. Now show the converse: If $\left(^{*}\right)$ holds, then U and V are a complementary pair. - Hint: Recall how to express a squared bracket in terms of a trace.
(b) Now consider the set of $N+1$ operators defined by
$W_{0}=U, W_{1}=U V, W_{2}=U^{2} V, \ldots, W_{N-1}=U^{N-1} V, W_{N}=V$,
where U and V are the usual pair of complementary unitary operators. For $j=1,2, \ldots, N-1$, show that $W_{j}=U^{j} V$ is unitary and $W_{j}{ }^{N}$ is a multiple of the identity.
(c) Then show that each pair $W_{j}, W_{k}(0 \leq j<k \leq N)$ is a complementary pair if N is prime.
(d) For $N=4$, find a pair W_{j}, W_{k} that is not a complementary pair.

Problem 3 (20=10 +10 points)
Mass M moves along the x axis whereby the Hamilton operator

$$
H=\frac{1}{2 M} P^{2}-\lambda \delta\left(X-x_{0}\right) \quad \text { with constant } \lambda \text { and } x_{0}
$$

governs the evolution. The time transformation function $\left\langle x, t_{1} \mid x^{\prime}, t_{2}\right\rangle$ depends on the strength λ of the coupling to, and the location x_{0} of, the delta-function potential $\delta\left(X(t)-x_{0}\right)=\left|x_{0}, t\right\rangle\left\langle x_{0}, t\right|$.
(a) Use the quantum action principle to express $\frac{\partial}{\partial \lambda}\left\langle x, t_{1} \mid x^{\prime}, t_{2}\right\rangle$ as an integral over the intermediate time t.
(b) Then recall the $\lambda=0$ form of the time transformation function and determine the value of $\left.\frac{\partial}{\partial \lambda}\left\langle x_{0}, t_{1} \mid x_{0}, t_{2}\right\rangle\right|_{\lambda=0}$. - Hint: A parameterization that we used in lecture for an integral on page 40 of the notes could be useful.

Problem 4 ($30=10+10+10$ points)
For an operator A that has an inverse A^{-1}, one can define the determinant by the differential statement

$$
\begin{equation*}
\delta \operatorname{det}\{A\}=\operatorname{det}\{A\} \operatorname{tr}\left\{A^{-1} \delta A\right\} \tag{**}
\end{equation*}
$$

together with $\operatorname{det}\{1\}=1$.
(a) Consistency requires that $\delta_{1} \delta_{2} \operatorname{det}\{A\}=\delta_{2} \delta_{1} \operatorname{det}\{A\}$ if δ_{1} and δ_{2} symbolize two independent infinitesimal variations. Verify that this is indeed correct. - Hint: You will need an expression for δA^{-1}.
(b) Use $\left({ }^{* *}\right)$ to show that $\operatorname{det}\{A B\}=\operatorname{det}\{A\} \operatorname{det}\{B\}$.
(c) Use $\left(^{* *}\right)$ to express $\operatorname{det}\left\{\mathrm{e}^{Z}\right\}$ in terms of $\operatorname{tr}\{Z\}$.

