Problem 1 (15=9+6 points)

Operator A has three different eigenvalues: $a_1 = 1$, $a_2 = 2$, $a_3 = 4$.

- (a) Write the projection operators $|a_j\rangle\langle a_j| = \delta(A, a_j)$ (j = 1, 2, 3) as polynomials in A of the lowest possible degree.
- (b) Write the operator function $f(A) = \log_2 A$ as a polynomial in A of the lowest possible degree.

Problem 2 (35=15+5+10+5 points)

Operators U and V are two cyclic unitary operators of period N for an N-dimensional quantum degree of freedom.

(a) We know from the lecture and the tutorials that, for all integer values of n and m,

$$\operatorname{tr}\left\{U^{m}V^{n}\right\} = \begin{cases} N & \text{if } U^{m} = 1 \text{ and } V^{n} = 1, \\ 0 & \text{otherwise,} \end{cases}$$
(*)

<u>if</u> U and V are a pair of complementary observables. Now show the converse: If (*) holds, then U and V are a complementary pair. — Hint: Recall how to express a squared bracket in terms of a trace.

(b) Now consider the set of N + 1 operators defined by

$$W_0 = U$$
, $W_1 = UV$, $W_2 = U^2 V$, ..., $W_{N-1} = U^{N-1} V$, $W_N = V$,

where U and V are the usual pair of complementary unitary operators. For j = 1, 2, ..., N - 1, show that $W_j = U^j V$ is unitary and W_j^N is a multiple of the identity.

- (c) Then show that each pair W_j, W_k $(0 \le j < k \le N)$ is a complementary pair <u>if</u> N is prime.
- (d) For N = 4, find a pair W_j, W_k that is *not* a complementary pair.

Problem 3 (20=10+10 points)

Mass M moves along the x axis whereby the Hamilton operator

$$H = \frac{1}{2M}P^2 - \lambda \,\delta(X - x_0) \quad \text{with constant } \lambda \text{ and } x_0$$

governs the evolution. The time transformation function $\langle x, t_1 | x', t_2 \rangle$ depends on the strength λ of the coupling to, and the location x_0 of, the delta-function potential $\delta(X(t) - x_0) = |x_0, t\rangle \langle x_0, t|$.

- (a) Use the quantum action principle to express $\frac{\partial}{\partial \lambda} \langle x, t_1 | x', t_2 \rangle$ as an integral over the intermediate time t.
- (b) Then recall the $\lambda = 0$ form of the time transformation function and determine the value of $\frac{\partial}{\partial \lambda} \langle x_0, t_1 | x_0, t_2 \rangle \Big|_{\lambda = 0}$. Hint: A parameterization

that we used in lecture for an integral on page 40 of the notes could be useful.

Problem 4 (30=10+10+10 points)

For an operator ${\cal A}$ that has an inverse ${\cal A}^{-1},$ one can define the determinant by the differential statement

$$\delta \det \{A\} = \det \{A\} \operatorname{tr} \{A^{-1} \delta A\}$$
(**)

together with det $\{1\} = 1$.

- (a) Consistency requires that $\delta_1 \delta_2 \det \{A\} = \delta_2 \delta_1 \det \{A\}$ if δ_1 and δ_2 symbolize two *independent* infinitesimal variations. Verify that this is indeed correct. Hint: You will need an expression for δA^{-1} .
- (b) Use (**) to show that $det \{AB\} = det \{A\} det \{B\}$.
- (c) Use (**) to express det $\{e^Z\}$ in terms of tr $\{Z\}$.