1. Calculus of Variations ($\mathbf{1 5}$ marks)

For given $a>0$, what is the smallest value that you can get for

$$
\int_{-a}^{a} \mathrm{~d} x\left[\frac{\mathrm{~d}}{\mathrm{~d} x} y(x)\right]^{2}
$$

if the permissible $y(x)$ are restricted by

$$
y(\pm a)=0 \quad \text { and } \quad \int_{-a}^{a} \mathrm{~d} x|x| y(x)=a^{3} ?
$$

2. Group Theory ($35=15+15+5$ marks)

The elements $\boldsymbol{g}=(a, b)$ of the set G are ordered pairs of complex numbers, subject to $|a|^{2}-|b|^{2}=1$, one element of G for each a, b pair. The composition of two elements of G, written as a product, is defined by

$$
\boldsymbol{g}_{1} \boldsymbol{g}_{2}=\left(a_{1} a_{2}+b_{1}^{*} b_{2}, b_{1} a_{2}+a_{1}^{*} b_{2}\right) \quad \text { for } \quad \boldsymbol{g}_{1}=\left(a_{1}, b_{1}\right), \boldsymbol{g}_{2}=\left(a_{2}, b_{2}\right) .
$$

(a) Show that, with this composition rule, G is a group. In particular, state the a, b pairs for the neutral element \boldsymbol{e} and the inverse \boldsymbol{g}^{-1} of \boldsymbol{g}.
(b) Consider the following four restrictions on the values of a and b :
(i) $\operatorname{Im}(a)=\operatorname{Im}(b)$;
(ii) $\operatorname{Im}(a)=-\operatorname{Im}(b)$;
(iii) $\operatorname{Im}(b)=0$;
(iv) $b=0$.

Which of them define subgroups of G ?
(c) Of those restrictions that define subgroups, which ones define abelian subgroups?

3. Laplace Transform (15 marks)

For $T>0$, find the Laplace transform $F(s)$ of

$$
f(t)=\left\{\begin{array}{rll}
1 & \text { if } & \sin (2 \pi t / T)>0 \\
-1 & \text { if } & \sin (2 \pi t / T)<0 .
\end{array}\right.
$$

4. Contour Integration and Laplace Transformation ($35=10+15+10$ marks)

The functions $b_{n}(t)$ with $n=0, \pm 1, \pm 2 \ldots$ are defined by their generating function in accordance with

$$
\mathrm{e}^{\frac{1}{2} t(z-1 / z)}=\sum_{n=-\infty}^{\infty} z^{n} b_{n}(t)=\sum_{n=-\infty}^{\infty}(-z)^{-n} b_{n}(t) .
$$

(a) Show that

$$
(-1)^{n} b_{n}(t)=b_{-n}(t)=\int_{\mathcal{C}} \frac{\mathrm{d} z}{2 \pi \mathrm{i} z} z^{n} \mathrm{e}^{\frac{1}{2} t(z-1 / z)},
$$

where the contour \mathcal{C} circles $z=0$ once counter-clockwise along the unit circle.
(b) Use this to calculate the Laplace transforms $B_{n}(s)$ of all $b_{n}(t)$.
(c) Evaluate the integrals $\int_{0}^{\infty} \mathrm{d} t b_{0}(t)$ and $\int_{0}^{\infty} \mathrm{d} t \frac{b_{1}(t)}{t}$.

Hint: Do not worry about interchanging the order of summations and integrations.

