Problem 1 (25 marks)

Consider the set G whose elements are the complex 2×2 matrices M that obey

$$M^{\dagger} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} .$$

Show that G is a group, with matrix multiplication as the group composition. Then define G_+ as a subset of G such that $det\{M\} = 1$ for all $M \in G_+$, and show that G_+ is a subgroup of G. Give an example for a group element $M \in G$ that is <u>not</u> in G_+ .

Problem 2 (25 marks)

The elements of G_+ are the matrices $M(a, b, c, d) = \begin{pmatrix} a & ib \\ ic & d \end{pmatrix}$ with the real parameters a, b, c, d subject to ad + bc = 1. Which of the restrictions

(a)
$$b = c$$
 and $a = d$, (b) $b = 0$, (c) $c = 0$, (d) $M^{\dagger} = M$

defines a subgroup? Are there Abelian subgroups among them?

Problem 3 (25 marks)

Use Laplace-transformation techniques to evaluate

$$\int_0^t \mathrm{d}\tau \, (t-\tau)^m \, \tau^n$$

for $m, n = 0, 1, 2, 3, \ldots$.

Problem 4 (25 marks)

The given hermitian $n \times n$ matrix S is known to be a bit larger than the $n \times n$ identity matrix E, in the sense that their difference S - E has small positive eigenvalues. We want to calculate a $n \times n$ matrix T such that $T^{\dagger}ST = E$ by an iteration of the form

$$T_0 = E\,, \qquad T_{k+1} = T_k + \lambda T_k (T_k^{\scriptscriptstyle \dagger} S T_k - E) \quad \text{for } k = 0, 1, 2, \dots\,,$$

where λ is a complex parameter that we wish to choose optimally. Determine the best choice for λ by the following strategy. First express $\epsilon_{k+1} = T_{k+1}^{\dagger}ST_{k+1} - E$ as a cubic polynomial in $\epsilon_k = T_k^{\dagger}ST_k - E$, that is

$$\epsilon_{k+1} = c_1 \epsilon_k + c_2 \epsilon_k^2 + c_3 \epsilon_k^3 \,,$$

and then choose λ such that c_1 vanishes and $|c_2|$ is as small as possible. For your choice of λ , now find ϵ_0 , ϵ_1 , and ϵ_2 . — Express S^{-1} in terms of T.