Problem 1 (25 marks)
Consider the set G whose elements are the complex 2×2 matrices M that obey

$$
M^{\dagger}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) M=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Show that G is a group, with matrix multiplication as the group composition. Then define G_{+}as a subset of G such that $\operatorname{det}\{M\}=1$ for all $M \in G_{+}$, and show that G_{+}is a subgroup of G. Give an example for a group element $M \in G$ that is not in G_{+}.

Problem 2 (25 marks)
The elements of G_{+}are the matrices $M(a, b, c, d)=\left(\begin{array}{ll}a & \mathrm{i} b \\ \mathrm{i} c & d\end{array}\right)$ with the real parameters a, b, c, d subject to $a d+b c=1$. Which of the restrictions
(a) $b=c$ and $a=d$,
(b) $b=0$,
(c) $c=0$,
(d) $M^{\dagger}=M$
defines a subgroup? Are there Abelian subgroups among them?

Problem 3 (25 marks)
Use Laplace-transformation techniques to evaluate

$$
\int_{0}^{t} \mathrm{~d} \tau(t-\tau)^{m} \tau^{n}
$$

for $m, n=0,1,2,3, \ldots$.

Problem 4 (25 marks)
The given hermitian $n \times n$ matrix S is known to be a bit larger than the $n \times n$ identity matrix E, in the sense that their difference $S-E$ has small positive eigenvalues. We want to calculate a $n \times n$ matrix T such that $T^{\dagger} S T=E$ by an iteration of the form

$$
T_{0}=E, \quad T_{k+1}=T_{k}+\lambda T_{k}\left(T_{k}^{\dagger} S T_{k}-E\right) \quad \text { for } k=0,1,2, \ldots,
$$

where λ is a complex parameter that we wish to choose optimally. Determine the best choice for λ by the following strategy. First express $\epsilon_{k+1}=T_{k+1}^{\dagger} S T_{k+1}-E$ as a cubic polynomial in $\epsilon_{k}=T_{k}^{\dagger} S T_{k}-E$, that is

$$
\epsilon_{k+1}=c_{1} \epsilon_{k}+c_{2} \epsilon_{k}^{2}+c_{3} \epsilon_{k}^{3},
$$

and then choose λ such that c_{1} vanishes and $\left|c_{2}\right|$ is as small as possible. For your choice of λ, now find $\epsilon_{0}, \epsilon_{1}$, and ϵ_{2}. - Express S^{-1} in terms of T.

