Problem 1 (20 marks)
Harmonic oscillator with ladder operators A, A^{\dagger} : Determine the time transformation function $\left\langle a^{*}, t \mid a^{\prime}, t_{0}\right\rangle$ for the Hamilton operator

$$
H=\hbar \omega(t) A^{\dagger} A
$$

which has a time-dependent frequency $\omega(t)$.
Problem 2 (20 marks)
Motion along the x axis: A linear transformation of position operator X and momentum operator P is given by

$$
X \rightarrow \lambda_{1} X+\mu_{1} P, \quad P \rightarrow \lambda_{2} P+\mu_{2} X .
$$

State all properties of the numerical coefficients $\lambda_{1}, \lambda_{2}, \mu_{1}$, and μ_{2} that are necessary to ensure that the transformation is unitary. Then show that all such unitary transformations can be realized as two successive transformations of this kind with $\mu_{1}=0$ for one of the two and $\mu_{2}=0$ for the other.

Problem 3 (20 marks)
Harmonic oscillator with ladder operators A, A^{\dagger} : Show that

$$
F=\sum_{k=0}^{\infty}\binom{A^{\dagger} A}{k} f_{k},
$$

if the normally-ordered form of an operator F has the form

$$
F=\sum_{k=0}^{\infty} \frac{f_{k}}{k!} A^{\dagger^{k}} A^{k}
$$

with complex coefficients f_{k}. Use this for $f_{k}=y^{k}$ to express the corresponding F compactly as a function of $A^{\dagger} A$.

Problem 4 (20 marks)
Two-dimensional motion: What are the eigenvalues and their multiplicities of the Hamilton operator

$$
H=\frac{1}{2 M}\left(P_{1}^{2}+P_{2}^{2}\right)+\frac{1}{2} M \omega^{2}\left(X_{1}^{2}+X_{2}^{2}\right)+\frac{1}{2} \omega\left(X_{1} P_{2}-X_{2} P_{1}\right),
$$

where the mass M and the frequency ω are positive constants?
Problem 5 (20 marks)
Orbital angular momentum with $\langle l, m|$ denoting the usual common eigenbras of \vec{L}^{2} and L_{3} : Show first that

$$
\left(L_{1} \pm \mathrm{i} L_{3}\right) f\left(L_{2}\right)=f\left(L_{2} \pm \hbar\right)\left(L_{1} \pm \mathrm{i} L_{3}\right)
$$

for any function $f\left(L_{2}\right)$ of L_{2}, and then use this to demonstrate that

$$
\left.\langle l, m|\right|^{\frac{1}{2} i \pi L_{2} / \hbar}
$$

is an eigenbra of L_{1} with eigenvalue $m \hbar$.

