Problem 1 (20 marks)
Motion along the x axis: Determine the $x p$ time transformation function $\left\langle x, t \mid p, t_{0}\right\rangle$ for the Hamilton operator

$$
H=\frac{1}{2 M(t)} P^{2}
$$

which has a time-dependent mass $M(t)$.

Problem 2 (20 marks)
Harmonic oscillator with ladder operators A, A^{\dagger} and Fock state kets $|n\rangle$: Operator V is defined by

$$
V=\sum_{n=0}^{\infty}|n+1\rangle\langle n| .
$$

Verify that $V^{\dagger} V=1$, and show that V is not unitary. Determine $W\left(A^{\dagger} A\right)$ such that $V=A^{\dagger} W\left(A^{\dagger} A\right)$.

Problem 3 (20 marks)
As usual we denote by A and A^{\dagger} the ladder operators of a harmonic oscillator. Show that the normally-ordered form of an arbitrary function $F\left(A^{\dagger} A\right)$ of the product $A^{\dagger} A$ is given by

$$
F\left(A^{\dagger} A\right)=\sum_{n=0}^{\infty} \frac{F(n)}{n!} A^{\dagger n} \mathrm{e}^{-A^{\dagger} ; A} A^{n}
$$

Use this to find the normally-ordered form of $z^{A^{\dagger} A}$ where z is any complex number.

Problem 4 (20 marks)
What are the eigenvalues and their multiplicities of the Hamilton operator

$$
H=\frac{1}{2 M} \vec{P}^{2}+\frac{1}{2} M \omega^{2} \vec{R}^{2}
$$

for a three-dimensional isotropic harmonic oscillator?

Problem 5 (20 marks)
Orbital angular momentum with $\langle l, m|$ denoting the usual common eigenbras of \vec{L}^{2} and L_{3} : The system is in the state described by the bra

$$
\langle |=\frac{2}{3}\langle l=1, m=1|+\frac{1}{3}\langle l=1, m=0|+\frac{2}{3}\langle l=1, m=-1| .
$$

Find the spreads of L_{1}, L_{2}, and L_{3}, and verify that each pair of them obeys the respective uncertainty relation.

