Problem 1 (20 marks)

Motion along the x axis: Determine the xp time transformation function $\langle x, t | p, t_0 \rangle$ for the Hamilton operator

$$H = \frac{1}{2M(t)}P^2 \,,$$

which has a time-dependent mass M(t).

Problem 2 (20 marks)

Harmonic oscillator with ladder operators $A,\,A^{\dagger}$ and Fock state kets $|n\rangle$: Operator V is defined by

$$V = \sum_{n=0}^{\infty} |n+1\rangle \langle n|.$$

Verify that $V^{\dagger}V = 1$, and show that V is <u>not</u> unitary. Determine $W(A^{\dagger}A)$ such that $V = A^{\dagger}W(A^{\dagger}A)$.

Problem 3 (20 marks)

As usual we denote by A and A^{\dagger} the ladder operators of a harmonic oscillator. Show that the normally-ordered form of an arbitrary function $F(A^{\dagger}A)$ of the product $A^{\dagger}A$ is given by

$$F(A^{\dagger}A) = \sum_{n=0}^{\infty} \frac{F(n)}{n!} A^{\dagger n} \mathrm{e}^{-A^{\dagger}; A} A^{n}.$$

Use this to find the normally-ordered form of $z^{A^{\dagger}A}$ where z is any complex number.

Problem 4 (20 marks)

What are the eigenvalues and their multiplicities of the Hamilton operator

$$H=\frac{1}{2M}\vec{P}^2+\frac{1}{2}M\omega^2\vec{R}^2$$

for a three-dimensional isotropic harmonic oscillator?

Problem 5 (20 marks)

Orbital angular momentum with $\langle l, m |$ denoting the usual common eigenbras of \vec{L}^2 and L_3 : The system is in the state described by the bra

$$\langle | = \frac{2}{3} \langle l = 1, m = 1 | + \frac{1}{3} \langle l = 1, m = 0 | + \frac{2}{3} \langle l = 1, m = -1 | .$$

Find the spreads of L_1 , L_2 , and L_3 , and verify that each pair of them obeys the respective uncertainty relation.