Problem 1 (10 marks)

Position operator X, momentum operator P. Simplify $PX^{3}P - XPXPX$.

Problem 2 (5+5=10 marks)

Consider functions $f(X) = \int dx |x\rangle f(x) \langle x|$ of position operator X.

- (a) Which property must f(x) have, if f(X) is hermitian?
- (b) Which property must f(x) have, if f(X) is unitary?

Problem 3 (10 marks)

Position operator X, momentum operator P; real numerical parameters x and p. How are x and p related to each other if

$$\mathrm{e}^{\mathrm{i}pX/\hbar}\mathrm{e}^{\mathrm{i}xP/\hbar} = \mathrm{e}^{\mathrm{i}xP/\hbar}\mathrm{e}^{\mathrm{i}pX/\hbar}$$

holds?

Problem 4 (10+8+8+9=35 marks) Operator U is defined by its position matrix elements

$$\langle x|U|x'\rangle = rac{1}{\sqrt{2\pi}\,a}\mathrm{e}^{\mathrm{i}xx'/a^2}$$

where a > 0 is a numerical length parameter.

- (a) Show that U is unitary.
- (b) Determine the mixed position-momentum matrix elements $\langle x|U|p'\rangle$.
- (c) Determine the momentum matrix elements $\langle p|U|p'\rangle$.
- (d) What is $\langle x|U^2$?

Problem 5 (10+15+10=35 marks)

State ket $|\rangle$ is specified by its position wave function

 $\psi(x) = \langle x | \rangle = \sqrt{\kappa} e^{-\kappa |x|}$ with parameter $\kappa > 0$.

- (a) Determine the expectation value of the unitary operator e^{ikX} where k is a real parameter.
- (b) Express $\langle x|e^{\frac{1}{2}iaP/\hbar}| \rangle$ and $\langle |e^{\frac{1}{2}iaP/\hbar}|x\rangle$ in terms of $\psi(x)$ whereby a is a real parameter; then determine the expectation value of $e^{iaP/\hbar}$.
- (c) Extract $\langle X \rangle$ and $\langle X^2 \rangle$ out of $\langle e^{ikX} \rangle$, as well as $\langle P \rangle$ and $\langle P^2 \rangle$ out of $\langle e^{iaP/\hbar} \rangle$. Then determine the position spread δX and the momentum spread δP and verify that they obey the uncertainty relation.