Problem 1 ($20=10+10$ points)
As in lecture, operators U and V are the standard complementary pair of cyclic unitary operators of period N for an N-dimensional quantum degree of freedom, and their eigenkets are denoted by $\left|u_{k}\right\rangle$ and $\left|v_{l}\right\rangle$, respectively, for $k, l=1,2, \ldots, N$.
(a) For $F=\sum_{k, l=1}^{N} f_{k l} U^{k} V^{l}$ and $G=\sum_{k, l=1}^{N} g_{k l} U^{k} V^{l}$, express the $\operatorname{trace} \operatorname{tr}\left\{F^{\dagger} G\right\}$ in terms of the complex coefficients $f_{k l}$ and $g_{k l}$.
(b) Show that $\sum_{k=1}^{N}\left\langle u_{k}\right|=\sqrt{N}\left\langle v_{N}\right|$. By analogy, what is $\sum_{l=1}^{N}\left|v_{l}\right\rangle$?

Problem 2 ($40=5+15+10+10$ points)
We consider two hermitian operators, Q and Γ. The eigenvalues q of operator Q are all positive numbers: $0<q<\infty$; the eigenvalues γ of operator Γ are all real numbers: $-\infty<\gamma<\infty$; and their eigenstates are related by

$$
\langle q \mid \gamma\rangle=\frac{1}{\sqrt{2 \pi}} q^{\mathrm{i} \gamma},
$$

whereby

$$
\left\langle q \mid q^{\prime}\right\rangle=q \delta\left(q-q^{\prime}\right), \quad\left\langle\gamma \mid \gamma^{\prime}\right\rangle=\delta\left(\gamma-\gamma^{\prime}\right)
$$

are the respective orthonormality statements.
(a) Explain why Q and Γ constitute a pair of complementary observables.
(b) Evaluate $\int_{0}^{\infty} \frac{\mathrm{d} q}{q}\langle\gamma \mid q\rangle\left\langle q \mid \gamma^{\prime}\right\rangle$ and $\int_{-\infty}^{\infty} \mathrm{d} \gamma\langle q \mid \gamma\rangle\left\langle\gamma \mid q^{\prime}\right\rangle$ to establish the completeness relations

$$
\int_{0}^{\infty} \frac{\mathrm{d} q}{q}|q\rangle\langle q|=1, \quad \int_{-\infty}^{\infty} \mathrm{d} \gamma|\gamma\rangle\langle\gamma|=1
$$

(c) Show that $Q^{i \gamma^{\prime}}|\gamma\rangle=\left|\gamma+\gamma^{\prime}\right\rangle$ for all real numbers γ and γ^{\prime}.
(d) Use this to demonstrate that

$$
\mathrm{e}^{\mathrm{i} \beta \Gamma} Q^{\mathrm{i} \gamma}=\mathrm{e}^{\mathrm{i} \beta \gamma} Q^{\mathrm{i} \gamma} \mathrm{e}^{\mathrm{i} \beta \Gamma}
$$

for all real numbers β and γ.

Problem 3 (15=5+10 points)
(a) First show that

$$
\mathrm{e}^{-\epsilon B} \mathrm{e}^{A} \mathrm{e}^{\epsilon B}=\mathrm{e}^{\mathrm{e}^{-\epsilon B} A \mathrm{e}^{\epsilon B}}
$$

where A and B are operators and ϵ is a complex number.
(b) Then demonstrate that

$$
\left[\mathrm{e}^{A}, B\right]=\int_{0}^{1} \mathrm{~d} x \mathrm{e}^{(1-x) A}[A, B] \mathrm{e}^{x A}
$$

Problem 4 ($25=15+10$ points)
All eigenvalues of the hermitian operator A are positive.
(a) Verify that

$$
\log A=\int_{0}^{\infty} \mathrm{d} \alpha\left(\frac{1}{\alpha+1}-\frac{1}{\alpha+A}\right)=\int_{0}^{\infty} \mathrm{d} \beta \frac{\mathrm{e}^{-\beta}-\mathrm{e}^{-\beta A}}{\beta}
$$

are two valid integral representations of $\log A$.
(b) Consider an infinitesimal variation δA and establish

$$
\delta \log A=\int_{0}^{\infty} \mathrm{d} \alpha \frac{1}{\alpha+A} \delta A \frac{1}{\alpha+A} .
$$

