1. A particle (mass M, position operator X, momentum operator P) moves along the x axis under the influence of the Hamilton operator $H=\frac{1}{2 M}(P-M \omega X)^{2}$ where $\omega>0$ is a constant frequency parameter.
(a) State the Heisenberg equations of motion for $P(t)$ and $X(t)$, and solve them. Then evaluate the commutator $\left[X(t), X\left(t_{0}\right)\right]$.
(b) Express $P(t), P\left(t_{0}\right), P(t)-M \omega X(t)$, and H in terms of $X(t)$ and $X\left(t_{0}\right)$. [6 marks]
(c) Find the time transformation function $\left\langle x, t \mid x^{\prime}, t_{0}\right\rangle$ by first establishing its derivatives with respect to x, x^{\prime}, and $T=t-t_{0}$.
[10 marks]
2. A and A^{\dagger} are the ladder operators of a harmonic oscillator. A hermitian operator Z is such that

$$
Z A^{\dagger}=(1-\lambda) A^{\dagger} Z \quad \text { with } 0<\lambda<1,
$$

and is normalized to unit $\operatorname{trace}, \operatorname{tr}\{Z\}=1$.
(a) Determine the normally ordered form of Z.
(b) Show that Z commutes with $A^{\dagger} A$. Then express Z as a function of $A^{\dagger} A$.
3. Orbital angular momentum vector \vec{L} with cartesian components L_{1}, L_{2}, and L_{3}. The system is in an eigenstate of \vec{L}^{2} with eigenvalue $6 \hbar^{2}$.
(a) What are the possible outcomes when one measures
(i) L_{1}^{2};
(ii) L_{2}^{2};
(iii) $L_{1}^{2}+L_{2}^{2}$?
[6 marks]
(b) What are the possible outcomes when one measures $L_{1}^{2}-L_{2}^{2}$? [12 marks]
(c) What are the expectation values and the spreads of L_{1} and L_{2} in an eigenstate of L_{3} with eigenvalue $m \hbar$?
4. A harmonic oscillator (mass M, natural frequency ω, position operator X, momentum operator P) is perturbed by a δ-function potential of strength $\propto V$, so that the Hamilton operator is

$$
H=H_{0}+H_{1} \quad \text { with } \quad H_{0}=\frac{P^{2}}{2 M}+\frac{1}{2} M \omega^{2} X^{2} \quad \text { and } \quad H_{1}=V \sqrt{\frac{\hbar}{M \omega}} \delta(X)
$$

where $\delta(X)=\left.(|x\rangle\langle x|)\right|_{x=0}$. As usual, we denote the eigenkets of H_{0} by $|n\rangle$ with $n=0,1,2, \ldots$.
(a) Determine the $\xi=0$ value of the nth Hermite polynomial $H_{n}(\xi)$ with the aid of the generating function

$$
\mathrm{e}^{2 t \xi-t^{2}}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(\xi)
$$

Then find $\left.\langle x \mid n\rangle\right|_{x=0}$ for $n=0,1,2, \ldots$.
[10 marks]
(b) Write $E_{n}(V)$ for the V-dependent nth eigenvalue of H and determine

$$
\left.\frac{\partial E_{n}}{\partial V}\right|_{V=0}
$$

for $n=0,1,2, \ldots$.
[10 marks]
(c) Use the large- m approximation $\binom{2 m}{m} \simeq \frac{4^{m}}{\sqrt{\pi m}}$ to establish a large- n approximation for $\left.\frac{\partial E_{n}}{\partial V}\right|_{V=0}$.

