- **1.** A particle (mass M, position operator X, momentum operator P) moves along the x axis under the influence of the Hamilton operator $H = \frac{1}{2M} (P M\omega X)^2$ where $\omega > 0$ is a constant frequency parameter.
 - (a) State the Heisenberg equations of motion for P(t) and X(t), and solve them. Then evaluate the commutator $[X(t), X(t_0)]$. [9 marks]
 - (b) Express P(t), $P(t_0)$, $P(t) M\omega X(t)$, and H in terms of X(t) and $X(t_0)$. [6 marks]
 - (c) Find the time transformation function $\langle x, t | x', t_0 \rangle$ by first establishing its derivatives with respect to x, x', and $T = t t_0$. [10 marks]
- **2.** A and A^{\dagger} are the ladder operators of a harmonic oscillator. A hermitian operator Z is such that

 $ZA^{\dagger} = (1 - \lambda)A^{\dagger}Z \quad \text{with } 0 < \lambda < 1,$

and is normalized to unit trace, $tr \{Z\} = 1$.

- (a) Determine the normally ordered form of Z. [15 marks]
- (b) Show that Z commutes with $A^{\dagger}A$. Then express Z as a function of $A^{\dagger}A$. [10 marks]
- **3.** Orbital angular momentum vector \vec{L} with cartesian components L_1 , L_2 , and L_3 . The system is in an eigenstate of \vec{L}^2 with eigenvalue $6\hbar^2$.
 - (a) What are the possible outcomes when one measures (i) L_1^2 ; (ii) L_2^2 ; (iii) $L_1^2 + L_2^2$? [6 marks]
 - (b) What are the possible outcomes when one measures $L_1^2 L_2^2$? [12 marks]
 - (c) What are the expectation values and the spreads of L_1 and L_2 in an eigenstate of L_3 with eigenvalue $m\hbar$? [7 marks]

4. A harmonic oscillator (mass M, natural frequency ω , position operator X, momentum operator P) is perturbed by a δ -function potential of strength $\propto V$, so that the Hamilton operator is

$$H = H_0 + H_1 \quad \text{with} \quad H_0 = \frac{P^2}{2M} + \frac{1}{2}M\omega^2 X^2 \quad \text{and} \quad H_1 = V\sqrt{\frac{\hbar}{M\omega}}\,\delta(X)\,,$$

where $\delta(X) = (|x\rangle\langle x|)|_{x=0}$. As usual, we denote the eigenkets of H_0 by $|n\rangle$ with $n = 0, 1, 2, \dots$.

(a) Determine the $\xi = 0$ value of the *n*th Hermite polynomial $H_n(\xi)$ with the aid of the generating function

$$e^{2t\xi - t^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(\xi)$$

Then find $\langle x|n\rangle\Big|_{x=0}$ for $n=0,1,2,\ldots$ [10 marks]

(b) Write $E_n(V)$ for the V-dependent nth eigenvalue of H and determine

$$\left. \frac{\partial E_n}{\partial V} \right|_{V=0}.$$

for n = 0, 1, 2, ... [10 marks] (c) Use the large-*m* approximation $\begin{pmatrix} 2m \\ m \end{pmatrix} \simeq \frac{4^m}{\sqrt{\pi m}}$ to establish a large-*n* approximation for $\frac{\partial E_n}{\partial V}\Big|_{V=0}$. [5 marks]