Problem 1 (20 marks)
A harmonic oscillator (mass M, natural frequency ω) is in its ground state. Determine the expectation value of $\frac{1}{2}\left[X\left(t_{1}\right) X\left(t_{2}\right)+X\left(t_{2}\right) X\left(t_{1}\right)\right]$ for any two times t_{1} and t_{2}.

Problem 2 (20 marks)
Orbital angular momentum: If \vec{L}^{2} has the value $l(l+1) \hbar^{2}$, with $l=0,1,2, \ldots$, what is the value of

$$
\operatorname{tr}\left\{\mathrm{e}^{\gamma L_{3} / \hbar}\right\}
$$

for real γ ?

Problem 3 (30 marks)
A hydrogenic atom (as usual: electron mass M, electron charge $-e$, nuclear charge $Z e$) is exposed to a perturbing potential that is given by

$$
H_{1}=\frac{V_{0}}{\left(r / a_{0}\right)^{2}},
$$

where $V_{0}>0$ is the strength of the perturbation and $a_{0}=\frac{\hbar^{2}}{M e^{2}}$ is the Bohr radius. What is the energy of a bound state with radial quantum number n_{r} and angular momentum quantum number l ? [Hint: You can state the exact energy eigenvalues after considering the radial Schrödinger equation.]

Problem 4 (30 marks)
Motion along the x axis; mass M, position operator X, momentum operator P. Use trial wave functions of the form $\psi(x)=\sqrt{\kappa} \mathrm{e}^{-\kappa|x|}$, with an adjustable parameter $\kappa>0$, to establish upper bounds on the ground state energy of the Hamilton operator

$$
H=\frac{1}{2 M} P^{2}-\frac{\left(\hbar \kappa_{0}\right)^{2}}{M} \mathrm{e}^{-\kappa_{0}|X|},
$$

where $\kappa_{0}>0$ specifies the strength and the range of the potential energy. For which value of κ do you get the best upper bound? What is its value?

