Problem 1 (20 marks)

A harmonic oscillator is in the coherent state described by the ket $|a\rangle$. Determine the expectation values of position X and momentum P and their spreads δX and δP . How large is their product $\delta X \, \delta P$?

Problem 2 (20 marks)

Orbital angular momentum: If the system is in an eigenstate of \vec{L}^2 with eigenvalue $2\hbar^2$, what are the possible outcomes when a measurement of $L_1L_2 + L_2L_1$ is performed?

Problem 3 (30 marks)

A harmonic oscillator (natural frequency ω , ladder operators A and A^{\dagger}) is perturbed by a potential proportional to $i(A^{\dagger^2} - A^2)$, so that the Hamilton operator is

$$H = \hbar \omega A^{\dagger} A + i\hbar \Omega (A^{\dagger^2} - A^2)$$
 with $|\Omega| < \frac{1}{2}\omega$.

Introduce new ladder operators B and B^{\dagger} as linear combinations of A and A^{\dagger} (that is $B = \alpha A + \beta A^{\dagger}$ with $[B, B^{\dagger}] = 1$, of course), such that

$$H = \hbar \omega' B^{\dagger} B + E_0$$

and determine the ground state energy of E_0 thereby. [Hint: You'll need to establish three equations for $|\alpha|$, $|\beta|$, and ω' .]

Problem 4 (30 marks)

Motion along the x axis; position operator X, momentum operator P. The ground state energy E_0 of the Hamilton operator

$$H=\frac{P^2}{2M}+\frac{1}{2}M\omega^2X^2+F|X|\qquad\text{with }M>0\text{, }\omega>0\text{, }F\text{ arbitrary}$$

is a function of the parameters $M,\,\omega,$ and F. Determine $\frac{\partial E_0}{\partial F}\big|_{F=0}.$