Problem 1 (20 marks)
A harmonic oscillator is in the coherent state described by the ket $|a\rangle$. Determine the expectation values of position X and momentum P and their spreads δX and δP. How large is their product $\delta X \delta P$?

Problem 2 (20 marks)
Orbital angular momentum: If the system is in an eigenstate of \vec{L}^{2} with eigenvalue $2 \hbar^{2}$, what are the possible outcomes when a measurement of $L_{1} L_{2}+L_{2} L_{1}$ is performed?

Problem 3 (30 marks)
A harmonic oscillator (natural frequency ω, ladder operators A and A^{\dagger}) is perturbed by a potential proportional to $\mathrm{i}\left(A^{\dagger^{2}}-A^{2}\right)$, so that the Hamilton operator is

$$
H=\hbar \omega A^{\dagger} A+\mathrm{i} \hbar \Omega\left(A^{\dagger^{2}}-A^{2}\right) \quad \text { with }|\Omega|<\frac{1}{2} \omega .
$$

Introduce new ladder operators B and B^{\dagger} as linear combinations of A and A^{\dagger} (that is $B=\alpha A+\beta A^{\dagger}$ with $\left[B, B^{\dagger}\right]=1$, of course), such that

$$
H=\hbar \omega^{\prime} B^{\dagger} B+E_{0}
$$

and determine the ground state energy of E_{0} thereby.
[Hint: You'll need to establish three equations for $|\alpha|,|\beta|$, and ω^{\prime}.]

Problem 4 (30 marks)
Motion along the x axis; position operator X, momentum operator P. The ground state energy E_{0} of the Hamilton operator

$$
H=\frac{P^{2}}{2 M}+\frac{1}{2} M \omega^{2} X^{2}+F|X| \quad \text { with } M>0, \omega>0, F \text { arbitrary }
$$

is a function of the parameters M, ω, and F. Determine $\left.\frac{\partial E_{0}}{\partial F}\right|_{F=0}$.

