These sample solutions were prepared by Bess Fang.

Problem 1

A harmonic oscillator is in the coherent state described by the ket $|a\rangle$. In order to compute the expectation value of position X and momentum P and their spreads δX and δP, we first re-write these operators in terms of the ladder operators A and A^{\dagger} :

$$
\begin{aligned}
X & =\frac{l}{\sqrt{2}}\left(A^{\dagger}+A\right), \\
P & =\frac{\hbar / l}{\sqrt{2}}\left(\mathrm{i} A^{\dagger}-\mathrm{i} A\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\langle X\rangle & =\frac{\left\langle a^{*}\right| X|a\rangle}{\left\langle a^{*} \mid a\right\rangle} \\
& =\frac{l}{\sqrt{2}}\left(a^{*}+a\right)=\sqrt{2} l \operatorname{Re}(a) \\
\langle P\rangle & =\frac{\left\langle a^{*}\right| P|a\rangle}{\left\langle a^{*} \mid a\right\rangle} \\
& =\frac{\hbar / l}{\sqrt{2}}\left(\mathrm{i} a^{*}-\mathrm{i} a\right)=\sqrt{2} \frac{\hbar}{l} \operatorname{Im}(a) .
\end{aligned}
$$

To compute the spread, we first compute X^{2} and P^{2} in terms of the ladder operators:

$$
\begin{aligned}
X^{2} & =\frac{l^{2}}{2}\left(A^{\dagger}+A\right)^{2}=\frac{l^{2}}{2}\left(A^{\dagger^{2}}+A^{\dagger} A+A A^{\dagger}+A^{2}\right) \\
& =\frac{l^{2}}{2}\left(A^{\dagger^{2}}+2 A^{\dagger} A+A^{2}+1\right), \\
P^{2} & =\frac{(\hbar / l)^{2}}{2}\left(\mathrm{i} A^{\dagger}-\mathrm{i} A\right)^{2}=\frac{(\hbar / l)^{2}}{2}\left(-A^{\dagger^{2}}+A^{\dagger} A+A A^{\dagger}-A^{2}\right) \\
& =\frac{(\hbar / l)^{2}}{2}\left(-A^{\dagger^{2}}+2 A^{\dagger} A-A^{2}+1\right) .
\end{aligned}
$$

The computation of the spread follows

$$
\begin{aligned}
\left\langle X^{2}\right\rangle & =\frac{l^{2}}{2}\left(a^{*^{2}}+2 a^{*} a+a^{2}+1\right)=\frac{l^{2}}{2}\left(a^{*}+a\right)^{2}+\frac{l^{2}}{2} \\
& =\langle X\rangle^{2}+\frac{l^{2}}{2}, \text { so that } \\
(\delta X)^{2} & =\frac{l^{2}}{2} \text { or } \delta X=\frac{l}{\sqrt{2}} ; \\
\left\langle P^{2}\right\rangle & =\frac{(\hbar / l)^{2}}{2}\left(-a^{*^{2}}+2 a^{*} a-a^{2}+1\right)=\frac{(\hbar / l)^{2}}{2}\left(i a^{*}-i a\right)^{2}+\frac{(\hbar / l)^{2}}{2} \\
& =\langle P\rangle^{2}+\frac{(\hbar / l)^{2}}{2}, \text { so that } \\
(\delta P)^{2} & =\frac{(\hbar / l)^{2}}{2} \text { or } \delta P=\frac{\hbar / l}{\sqrt{2}} .
\end{aligned}
$$

From the results above, we can see that $\delta X \delta P=\frac{\hbar}{2}$ as we would expect since the coherent states are the minimum uncertainty states.

Problem 2

A system is in an eigenstate of \vec{L}^{2} with eigenvalue $2 \hbar^{2}$. Since we know

$$
\vec{L}^{2}|l, m\rangle=|l, m\rangle \hbar^{2} l(l+1),
$$

it is obvious that

$$
l=1, \text { and } m=-1,0,+1 .
$$

To find out the action of $L_{1} L_{2}+L_{2} L_{1}$, we consider the ladder operators for angular momentum:

$$
\begin{aligned}
& L_{ \pm}=L_{1} \pm \mathrm{i} L_{2} \\
& L_{ \pm}^{2}=L_{1}^{2}-L_{2}^{2} \pm \mathrm{i}\left(L_{1} L_{2}+L_{2} L_{1}\right) .
\end{aligned}
$$

So we have

$$
L_{1} L_{2}+L_{2} L_{1}=\frac{1}{2 \mathrm{i}}\left(L_{+}^{2}-L_{-}^{2}\right) .
$$

Now let us look at the action of these ladder operators acting on each of the eigenstate. When L_{+}is applied, we have

$$
\begin{aligned}
L_{+}|l=1, m=1\rangle & =0, \\
L_{+}|l=1, m=0\rangle & =|l=1, m=1\rangle \hbar \sqrt{(l-m)(l+m+1)} \\
& =|l=1, m=1\rangle \hbar \sqrt{2}, \\
L_{+}|l=1, m=-1\rangle & =|l=1, m=0\rangle \hbar \sqrt{2},
\end{aligned}
$$

and when L_{-}is applied, we obtain similar expressions

$$
\begin{aligned}
L_{-}|l=1, m=1\rangle & =|l=1, m=0\rangle \hbar \sqrt{(l+m)(l-m+1)} \\
& =|l=1, m=0\rangle \hbar \sqrt{2}, \\
L_{-}|l=1, m=0\rangle & =|l=1, m=-1\rangle \hbar \sqrt{2}, \\
L_{-}|l=1, m=-1\rangle & =0 .
\end{aligned}
$$

Now we can compute the action of $L_{1} L_{2}+L_{2} L_{1}$,

$$
\begin{aligned}
\frac{1}{2 \mathrm{i}}\left(L_{+}^{2}-L_{-}^{2}\right)|l=1, m=1\rangle & =|l=1, m=-1\rangle \frac{-1}{2 \mathrm{i}}(\hbar \sqrt{2})^{2}, \\
\frac{1}{2 \mathrm{i}}\left(L_{+}^{2}-L_{-}^{2}\right)|l=1, m=0\rangle & =0 \text { [eigenvalue is } 0], \\
\frac{1}{2 \mathrm{i}}\left(L_{+}^{2}-L_{-}^{2}\right)|l=1, m=-1\rangle & =|l=1, m=1\rangle \frac{1}{2 \mathrm{i}}(\hbar \sqrt{2})^{2} .
\end{aligned}
$$

The first and last equations could be combined to give

$$
\begin{aligned}
& \left(L_{1} L_{2}+L_{2} L_{1}\right)(|l=1, m=1\rangle,|l=1, m=-1\rangle) \\
= & \left(|l=1, m=-1\rangle \mathrm{i} \hbar^{2},|l=1, m=1\rangle\left(-\mathrm{i} \hbar^{2}\right)\right) \\
= & (|l=1, m=1\rangle,|l=1, m=-1\rangle)\left(\begin{array}{cc}
0 & -\mathrm{i} \hbar^{2} \\
\mathrm{i} \hbar^{2} & 0
\end{array}\right)
\end{aligned}
$$

and the eigenvalues of the matrix $\left(\begin{array}{cc}0 & -\mathrm{i} \hbar^{2} \\ \mathrm{i} \hbar^{2} & 0\end{array}\right)$ are $\pm \hbar^{2}$.

Problem 3

A perturbed harmonic oscillator has the Hamilton operator

$$
H=\hbar \omega A^{\dagger} A+\mathrm{i} \hbar \Omega\left(A^{\dagger^{2}}-A^{2}\right) \quad \text { with }|\Omega|<\frac{1}{2} \omega .
$$

Introduce new ladder operators B and B^{\dagger} such that

$$
B=\alpha A+\beta A^{\dagger}, \quad B^{\dagger}=\alpha^{*} A^{\dagger}+\beta^{*} A .
$$

For 'good' ladder operators, we expect their commutator to be 1, so we have

$$
\begin{aligned}
1 & =\left[B, B^{\dagger}\right] \\
& =\left[\alpha A+\beta A^{\dagger}, \alpha^{*} A^{\dagger}+\beta^{*} A\right] \\
& =|\alpha|^{2}-|\beta|^{2} .
\end{aligned}
$$

Also, we could re-express the Hamiltonian in terms of the new ladder operator as $H=\hbar \omega^{\prime} B^{\dagger} B+E_{0}$. Compute $B^{\dagger} B$,

$$
\begin{aligned}
B^{\dagger} B & =\left(\alpha A+\beta A^{\dagger}\right)\left(\alpha^{*} A^{\dagger}+\beta^{*} A\right) \\
& =|\alpha|^{2} A^{\dagger} A+|\beta|^{2} A A^{\dagger}+\alpha^{*} \beta A^{\dagger^{2}}+\beta^{*} \alpha A^{2} \\
& =\left(|\alpha|^{2}+|\beta|^{2}\right) A^{\dagger} A+\alpha^{*} \beta A^{\dagger^{2}}+\beta^{*} \alpha A^{2}+|\beta|^{2} .
\end{aligned}
$$

Thus, we could compare terms in the expressions of H :

$$
\begin{aligned}
H & =\hbar \omega^{\prime}\left(|\alpha|^{2}+|\beta|^{2}\right) A^{\dagger} A+\hbar \omega^{\prime} \alpha^{*} \beta A^{\dagger^{2}}+\hbar \omega^{\prime} \beta^{*} \alpha A^{2}+\hbar \omega^{\prime}|\beta|^{2}+E_{0} \\
& =\hbar \omega A^{\dagger} A+\mathrm{i} \hbar \Omega\left(A^{\dagger^{2}}-A^{2}\right),
\end{aligned}
$$

giving rise to

$$
\begin{aligned}
E_{0} & =-\hbar \omega^{\prime}|\beta|^{2} \\
\omega & =\omega^{\prime}\left(|\alpha|^{2}+|\beta|^{2}\right), \\
\mathrm{i} \Omega & =\omega^{\prime} \alpha^{*} \beta \\
-\mathrm{i} \Omega & =\omega^{\prime} \beta^{*} \alpha
\end{aligned}
$$

where the last two equations are complex conjugate of each other and thus essentially the same.

All together, we have the following three equations:

$$
\begin{align*}
|\alpha|^{2}-|\beta|^{2} & =1, \tag{1}\\
|\alpha|^{2}+|\beta|^{2} & =\omega / \omega^{\prime}, \tag{2}\\
|\alpha||\beta| & =|\Omega| / \omega^{\prime} . \tag{3}
\end{align*}
$$

Since we know that

$$
\begin{aligned}
|\alpha|^{2}+|\beta|^{2} \pm 2|\alpha||\beta| & =(|\alpha| \pm|\beta|)^{2} \\
|\alpha| \pm|\beta| & =\sqrt{|\alpha|^{2}+|\beta|^{2} \pm 2|\alpha||\beta|}, \\
& =\sqrt{\frac{\omega}{\omega^{\prime}} \pm \frac{2|\Omega|}{\omega^{\prime}}},
\end{aligned}
$$

we could always solve for $|\alpha|$ and $|\beta|$ separately. This is not necessary, however, as what we want to obtain is the expression for the energy E_{0} which is in terms of $|\beta|^{2}$ and ω^{\prime}. Thus we consider the following:

$$
\begin{aligned}
|\alpha|^{2}-|\beta|^{2} & =(|\alpha|+|\beta|)(|\alpha|-|\beta|)=\sqrt{\left(\frac{\omega}{\omega^{\prime}}\right)^{2}-\left(\frac{2 \Omega}{\omega^{\prime}}\right)^{2}}=1, \\
\text { so that } \quad \omega^{\prime} & =\sqrt{\omega^{2}-(2 \Omega)^{2}}=\sqrt{\omega^{2}-4 \Omega^{2}} .
\end{aligned}
$$

Also, from Eqs. (1),(2), we have

$$
|\beta|^{2}=\frac{1}{2} \frac{\omega}{\omega^{\prime}}-\frac{1}{2} .
$$

Therefore, the energy E_{0} is given by

$$
\begin{aligned}
E_{0} & =-\hbar \omega^{\prime}|\beta|^{2} \\
& =-\hbar \omega^{\prime} \frac{1}{2}\left(\frac{\omega}{\omega^{\prime}}-1\right) \\
& =-\hbar \frac{\omega-\omega^{\prime}}{2} \\
& =-\hbar \frac{\omega-\sqrt{\omega^{2}-4 \Omega^{2}}}{2} .
\end{aligned}
$$

Problem 4

Given that the ground state energy E_{0} of the Hamilton operator

$$
H=\frac{P^{2}}{2 M}+\frac{1}{2} M \omega^{2} X^{2}+F|X| \quad \text { with } M>0, \omega>0, F \text { arbitrary }
$$

is a function of the parameters M, ω, and F.
By the Hellmann-Feynman Theorem, we have

$$
\left.\frac{\partial E_{0}}{\partial F}\right|_{F=0}=\left.\left\langle\frac{\partial E_{0}}{\partial F}\right\rangle\right|_{F=0}=\left.\langle | X| \rangle\right|_{F=0} .
$$

When $F=0$, the Hamilton operator is that of a Harmonic Oscillator, so that the ground state wave function is simply

$$
\psi_{0}(x)=\pi^{-1 / 4} l^{-1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x}{l}\right)^{2}\right] \quad \text { with } \quad l=\sqrt{\frac{\hbar}{M \omega}}
$$

Therefore, the computation follows:

$$
\begin{aligned}
\left.\frac{\partial E_{0}}{\partial F}\right|_{F=0} & =\int d x|x| \frac{1}{\sqrt{\pi}} \frac{1}{l} e^{-(x / l)^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{1}{l} \int_{0}^{\infty} d x x e^{-(x / l)^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{1}{l} \int_{0}^{\infty} d x \frac{d}{d x}\left(-\frac{1}{2} l^{2} e^{-(x / l)^{2}}\right) \\
& =\frac{2}{\sqrt{\pi}} \frac{1}{l} \frac{1}{2} l^{2} \\
& =\frac{l}{\sqrt{\pi}} \\
& =\sqrt{\frac{\hbar}{\pi M \omega}} .
\end{aligned}
$$

