PART I

Answer ALL of the following FIVE short questions.

Short Question S1 (8 marks)

Your friend told you that $v(x, y)=x^{2}+2 x y-y^{2}$ is the imaginary part of an entire function $f(z)$ of $z=x+\mathrm{i} y$. You also know that $f(0)=0$. Determine the real part $u(x, y)$ of $f(z)$. Then write $f(z)$ compactly.

Short Question S2 (8 marks)
Evaluate the integral

$$
\int_{-\infty}^{\infty} \mathrm{d} x \delta\left(x^{2}-4 x+3\right) \mathrm{e}^{\mathrm{i} \pi x}
$$

Short Question S3 (8 marks)
The scalar field $\Phi(\mathbf{r})$ is given by $\Phi(\mathbf{r})=(\mathbf{b} \times \mathbf{r})^{2}$, whereby \mathbf{b} is a constant vector, that is: \mathbf{b} does not depend on the position vector \mathbf{r}. Find $\nabla \Phi$ and $\nabla^{2} \Phi$.

Short Question S4 (8 marks)
Volume V is bounded by surface $S ; \mathbf{F}(\mathbf{r})$ is a vector field. Show that

$$
\int_{S} \mathrm{~d} \mathbf{S} \nabla \cdot \mathbf{F}=\int_{V}(\mathrm{~d} \mathbf{r})\left[\nabla \times(\nabla \times \mathbf{F})+\nabla^{2} \mathbf{F}\right] .
$$

Short Question S5 (8 marks)
The function $y(x)$ obeys the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y} .
$$

If $y(0)=3$, what is $y(4)$?

PART II

Answer ANY TWO OF the following three long questions.

Long Question L1 (30 marks)
Calculate the Fourier transform $f(\omega)=\int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{\mathrm{i} \omega t} F(t)$ of $F(t)=\frac{1}{\left(t^{2}+T^{2}\right)^{2}}$ with $T>0$ by a suitable contour integration. Verify that $f(\omega=0)$ has the correct value by calculating $\int_{-\infty}^{\infty} \mathrm{d} t F(t)$ as the T derivative of a known integral.

Long Question L2 (30 marks)
Three given vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are such that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}>0$.
(a) Show that $[(\mathbf{a} \times \mathbf{b}) \times(\mathbf{b} \times \mathbf{c})] \cdot(\mathbf{c} \times \mathbf{a})=[(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]^{2}$.
(b) Three more vectors $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ are defined by

$$
\begin{array}{lll}
\mathbf{a} \cdot \mathbf{a}^{\prime}=1, & \mathbf{a} \cdot \mathbf{b}^{\prime}=0, & \mathbf{a} \cdot \mathbf{c}^{\prime}=0 \\
\mathbf{b} \cdot \mathbf{a}^{\prime}=0, & \mathbf{b} \cdot \mathbf{b}^{\prime}=1, & \mathbf{b} \cdot \mathbf{c}^{\prime}=0 \\
\mathbf{c} \cdot \mathbf{a}^{\prime}=0, & \mathbf{c} \cdot \mathbf{b}^{\prime}=0, & \mathbf{c} \cdot \mathbf{c}^{\prime}=1
\end{array}
$$

Express $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}$, and \mathbf{c}^{\prime} in terms of \mathbf{a}, \mathbf{b}, and \mathbf{c}.
(c) What are the cartesian coordinates of $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ if those of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are given by

$$
\mathbf{a} \hat{=}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad \mathbf{b} \hat{=}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \mathbf{c} \hat{=}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) ?
$$

Long Question L3 (30 marks)
The generating function $G(t, \varphi)$ for the Bessel functions $J_{m}(t)$ is

$$
G(t, \varphi)=\mathrm{e}^{\mathrm{i} t \cos \varphi}=\sum_{m=-\infty}^{\infty} \mathrm{i}^{m} \mathrm{e}^{\mathrm{i} m \varphi} J_{m}(t) .
$$

(a) Which three symmetry properties of the $J_{m}(t)$ follow from the three identities

$$
G(t, \varphi)=G(t, \pi-\varphi)^{*}, \quad G(t, \varphi)=G(t,-\varphi), \quad G(t, \varphi)=G(-t, \pi+\varphi) ?
$$

(b) Derive the recurrence relations

$$
\frac{2 m}{t} J_{m}(t)=J_{m-1}(t)+J_{m+1}(t), \quad 2 \frac{\mathrm{~d}}{\mathrm{~d} t} J_{m}(t)=J_{m-1}(t)-J_{m+1}(t)
$$

[Hint: Differentiate $G(t, \varphi)$.]

