PART I

Answer ALL of the following FIVE short questions.

Short Question S1 (8 marks)

Your friend told you that $v(x, y) = x^2 + 2xy - y^2$ is the imaginary part of an entire function f(z) of z = x + iy. You also know that f(0) = 0. Determine the real part u(x, y) of f(z). Then write f(z) compactly.

Short Question S2 (8 marks)

Evaluate the integral

$$\int_{-\infty}^{\infty} \mathrm{d}x \,\delta(x^2 - 4x + 3) \,\mathrm{e}^{\mathrm{i}\pi x} \,.$$

Short Question S3 (8 marks)

The scalar field $\Phi(\mathbf{r})$ is given by $\Phi(\mathbf{r}) = (\mathbf{b} \times \mathbf{r})^2$, whereby **b** is a constant vector, that is: **b** does not depend on the position vector **r**. Find $\nabla \Phi$ and $\nabla^2 \Phi$.

Short Question S4 (8 marks)

Volume V is bounded by surface S; $\mathbf{F}(\mathbf{r})$ is a vector field. Show that

$$\int_{S} \mathrm{d}\mathbf{S} \,\,\nabla\cdot\mathbf{F} = \int_{V} (\mathrm{d}\mathbf{r}) \,\left[\nabla\times(\nabla\times\mathbf{F}) + \nabla^{2}\mathbf{F}\right].$$

Short Question S5 (8 marks)

The function y(x) obeys the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y} \,.$$

If y(0) = 3, what is y(4)?

PART II

Answer ANY TWO OF the following three long questions.

Long Question L1 (30 marks)

Calculate the Fourier transform $f(\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} F(t)$ of $F(t) = \frac{1}{(t^2 + T^2)^2}$ with T > 0 by a suitable contour integration. Verify that $f(\omega = 0)$ has the correct value by calculating $\int_{-\infty}^{\infty} dt \, F(t)$ as the T derivative of a known integral.

Long Question L2 (30 marks)

- Three given vectors \mathbf{a} , \mathbf{b} , \mathbf{c} are such that $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} > 0$.
- (a) Show that $[(\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c})] \cdot (\mathbf{c} \times \mathbf{a}) = [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}]^2$.
- (b) Three more vectors \mathbf{a}' , \mathbf{b}' , \mathbf{c}' are defined by

$$\begin{aligned} \mathbf{a} \cdot \mathbf{a}' &= 1 , \quad \mathbf{a} \cdot \mathbf{b}' &= 0 , \quad \mathbf{a} \cdot \mathbf{c}' &= 0 , \\ \mathbf{b} \cdot \mathbf{a}' &= 0 , \quad \mathbf{b} \cdot \mathbf{b}' &= 1 , \quad \mathbf{b} \cdot \mathbf{c}' &= 0 , \\ \mathbf{c} \cdot \mathbf{a}' &= 0 , \quad \mathbf{c} \cdot \mathbf{b}' &= 0 , \quad \mathbf{c} \cdot \mathbf{c}' &= 1 . \end{aligned}$$

Express \mathbf{a}' , \mathbf{b}' , and \mathbf{c}' in terms of \mathbf{a} , \mathbf{b} , and \mathbf{c} .

(c) What are the cartesian coordinates of $\mathbf{a}',\,\mathbf{b}',\,\mathbf{c}'$ if those of $\mathbf{a},\,\mathbf{b},\,\mathbf{c}$ are given by

$$\mathbf{a} \stackrel{\circ}{=} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \quad \mathbf{b} \stackrel{\circ}{=} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad \mathbf{c} \stackrel{\circ}{=} \begin{pmatrix} 1\\1\\0 \end{pmatrix}?$$

Long Question L3 (30 marks)

The generating function $G(t, \varphi)$ for the Bessel functions $J_m(t)$ is

$$G(t,\varphi) = e^{it\cos\varphi} = \sum_{m=-\infty}^{\infty} i^m e^{im\varphi} J_m(t).$$

(a) Which three symmetry properties of the $J_m(t)$ follow from the three identities

$$G(t,\varphi) = G(t,\pi-\varphi)^*, \quad G(t,\varphi) = G(t,-\varphi), \quad G(t,\varphi) = G(-t,\pi+\varphi)?$$

(b) Derive the recurrence relations

$$\frac{2m}{t}J_m(t) = J_{m-1}(t) + J_{m+1}(t), \qquad 2\frac{\mathrm{d}}{\mathrm{d}t}J_m(t) = J_{m-1}(t) - J_{m+1}(t).$$

[Hint: Differentiate $G(t, \varphi)$.]