Problem 1 (25 marks)

The periodic function $F(t) = F(t+T) = \sum_{n=-\infty}^{\infty} f_n e^{-in\omega t}$ with $\omega T = 2\pi$ is specified by

$$F(t) = \cosh(\gamma t)$$
 with $\gamma > 0$ for $-\frac{T}{2} \le t \le \frac{T}{2}$

Determine the Fourier coefficients f_n . Then consider t = 0 to establish the identity

$$\frac{x}{\sinh x} = 1 + 2\sum_{n=1}^{\infty} (-1)^n \frac{x^2}{x^2 + (n\pi)^2} \,.$$

Which analogous statement do you obtain by considering t = T/2?

Problem 2 (15 marks)

The function $G(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega t} g(\omega)$ is known to be real and odd,

$$G(t) = G(t)^* = -G(-t).$$

What are the corresponding properties of $g(\omega)$ that are implied by these properties of G(t)?

Problem 3 (15 marks)

The four vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} are such that

$$\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = 0$$

How are $\mathbf{b} \cdot (\mathbf{c} \times \mathbf{d})$, $\mathbf{c} \cdot (\mathbf{d} \times \mathbf{a})$, $\mathbf{d} \cdot (\mathbf{a} \times \mathbf{b})$ related to $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$?

Problem 4 (25 marks)

Scalar field $\Phi(\mathbf{r})$ is given by $\Phi(\mathbf{r}) = (\mathbf{b} \cdot \mathbf{r})^2$, whereby \mathbf{b} is a constant vector that does not depend on the position vector \mathbf{r} .

- (a) Determine the gradient of $\Phi(\mathbf{r})$.
- (b) Determine the divergence of the gradient of $\Phi(\mathbf{r})$.
- (c) Convert the surface integral

$$\int_{S_R} \mathrm{d}\mathbf{S} \cdot \nabla \Phi$$

into a volume integral, whereby S_R is the sphere of radius R, centered at $\mathbf{r} = 0$. Evaluate explicitly both this surface integral and the equivalent volume integral. [Hint: You may choose a convenient direction for **b**.]

Problem 5 (20 marks) $a(\mathbf{r})$ is a scalar field; $\mathbf{B}(\mathbf{r})$ and $\mathbf{C}(\mathbf{r})$ are vector fields. Express

$$\nabla \times [a(\mathbf{r})\mathbf{B}(\mathbf{r}) \times \mathbf{C}(\mathbf{r})]$$

as a sum of three terms, such that only $a(\mathbf{r})$ is differentiated in the first term, only $\mathbf{B}(\mathbf{r})$ in the second term, and only $\mathbf{C}(\mathbf{r})$ in the third term.