Problem 1 (25 marks)
The periodic function $F(t)=F(t+T)=\sum_{n=-\infty}^{\infty} f_{n} \mathrm{e}^{-\mathrm{i} n \omega t}$ with $\omega T=2 \pi$ is specified by

$$
F(t)=\cosh (\gamma t) \quad \text { with } \gamma>0 \text { for }-\frac{T}{2} \leq t \leq \frac{T}{2} .
$$

Determine the Fourier coefficients f_{n}. Then consider $t=0$ to establish the identity

$$
\frac{x}{\sinh x}=1+2 \sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}}{x^{2}+(n \pi)^{2}} .
$$

Which analogous statement do you obtain by considering $t=T / 2$?
Problem 2 (15 marks)
The function $G(t)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{-\mathrm{i} \omega t} g(\omega)$ is known to be real and odd,

$$
G(t)=G(t)^{*}=-G(-t) .
$$

What are the corresponding properties of $g(\omega)$ that are implied by these properties of $G(t)$?

Problem 3 (15 marks)
The four vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are such that

$$
\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}=0 .
$$

How are $\mathbf{b} \cdot(\mathbf{c} \times \mathbf{d}), \mathbf{c} \cdot(\mathbf{d} \times \mathbf{a}), \mathbf{d} \cdot(\mathbf{a} \times \mathbf{b})$ related to $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$?
Problem 4 (25 marks)
Scalar field $\Phi(\mathbf{r})$ is given by $\Phi(\mathbf{r})=(\mathbf{b} \cdot \mathbf{r})^{2}$, whereby \mathbf{b} is a constant vector that does not depend on the position vector \mathbf{r}.
(a) Determine the gradient of $\Phi(\mathbf{r})$.
(b) Determine the divergence of the gradient of $\Phi(\mathbf{r})$.
(c) Convert the surface integral

$$
\int_{S_{R}} \mathrm{~d} \mathbf{S} \cdot \nabla \Phi
$$

into a volume integral, whereby S_{R} is the sphere of radius R, centered at $\mathbf{r}=0$. Evaluate explicitly both this surface integral and the equivalent volume integral. [Hint: You may choose a convenient direction for b.]

Problem 5 (20 marks)
$a(\mathbf{r})$ is a scalar field; $\mathbf{B}(\mathbf{r})$ and $\mathbf{C}(\mathbf{r})$ are vector fields. Express

$$
\nabla \times[a(\mathbf{r}) \mathbf{B}(\mathbf{r}) \times \mathbf{C}(\mathbf{r})]
$$

as a sum of three terms, such that only $a(\mathbf{r})$ is differentiated in the first term, only $\mathbf{B}(\mathbf{r})$ in the second term, and only $\mathbf{C}(\mathbf{r})$ in the third term.

