Problem 1 (25 marks)
The periodic function $F(t)=F(t+T)=\sum_{n=-\infty}^{\infty} f_{n} \mathrm{e}^{-\mathrm{i} n \omega t}$ with $\omega T=2 \pi$ is specified by

$$
F(t)=\left(\frac{2 t}{T}\right)^{2} \quad \text { for }-\frac{T}{2} \leq t \leq \frac{T}{2}
$$

Determine the Fourier coefficients f_{n}. Then consider $t=0$ and $t=T / 2$ to re-derive the values of two well-known series. [Hint: Remember about the $n=0$ term.]

Problem 2 (15 marks)
The function $G(t)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{-\mathrm{i} \omega t} g(\omega)$ is known to be real and even,

$$
G(t)=G(t)^{*}=G(-t) .
$$

What are the corresponding properties of $g(\omega)$ that are implied by these properties of $G(t)$?

Problem 3 (15 marks)
The three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ do not lie in the same plane, so that $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \neq 0$. Determine the vector x that obeys

$$
\mathbf{a} \cdot \mathbf{x}=1, \quad \mathbf{b} \cdot \mathbf{x}=0, \quad \mathbf{c} \cdot \mathbf{x}=0 .
$$

[Hint: The answer is simple.]
Problem 4 (25 marks)
Vector field $\mathbf{B}(\mathbf{r})$ is given by $\mathbf{B}(\mathbf{r})=(\mathbf{b} \cdot \mathbf{r})^{2} \mathbf{r}$, whereby \mathbf{b} is a constant vector that does not depend on the position vector \mathbf{r}.
(a) Determine the divergence of $\mathbf{B}(\mathbf{r})$.
(b) Determine the curl of $\mathbf{B}(\mathbf{r})$.
(c) Evaluate the surface integral

$$
\int_{S_{R}} \mathrm{~d} \mathbf{S} \cdot \mathbf{B}
$$

whereby S_{R} is the sphere of radius R, centered at $\mathbf{r}=0$.
[Hint: Choose a convenient direction for b.]
Problem 5 (20 marks)
$a(\mathbf{r})$ is a scalar field; $\mathbf{B}(\mathbf{r})$ and $\mathbf{C}(\mathbf{r})$ are vector fields. Express

$$
\nabla \cdot[a(\mathbf{r}) \mathbf{B}(\mathbf{r}) \times \mathbf{C}(\mathbf{r})]
$$

as a sum of three terms, such that only $a(\mathbf{r})$ is differentiated in the first term, only $\mathbf{B}(\mathbf{r})$ in the second term, and only $\mathbf{C}(\mathbf{r})$ in the third term.

