Problem 1 (15 marks)
Your friend told you that $u(x, y)=\cos x \cosh y$ is the real part of an entire function.
Determine the imaginary part $v(x, y)$. Then write the function compactly.

Problem 2 (15 marks)
The values $f(z)$ of a certain entire function are real for all real values of z. Show that $f\left(z^{*}\right)=f(z)^{*}$. [Hint: Consider the Taylor expansion at $z=0$.]

Problem 3 (20 marks)
Evaluate

$$
\int_{z_{1}}^{z_{4}} \mathrm{~d} z|z|^{2}
$$

along this path:
(1) first follow the straight line from $z_{1}=-1$ to $z_{2}=-r$ with $r>0$;
(2) then follow either one of the two half-circles connecting $z_{2}=-r$ with $z_{3}=r$;
(3) finally follow the straight line from $z_{3}=r$ to $z_{4}=1$.

Problem 4 (20 marks)
For which values of z has

$$
f(z)=\frac{\mathrm{e}^{-\mathrm{i} z}}{(z-2)\left(z^{2}-4\right)}
$$

singularities? What are the residues of $f(z)$ at those singularities?

Problem 5 (30 marks)
For real $t \neq 0$, evaluate

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \varphi}{2 \pi} \frac{\cosh t}{\sinh t+\mathrm{i} \sin \varphi}
$$

with the aid of the residue method.

