1. A particle of mass M and kinetic energy $E=\frac{(\hbar k)^{2}}{2 M}$ is scattered by the δ-shell potential

$$
V(\vec{r})=V_{0} a \delta(r-a) \quad \text { with } a>0 \quad \text { and } V_{0}=\frac{(\hbar / a)^{2}}{2 M}
$$

Determine the total cross section σ_{0} for s-wave scattering by the following steps.
(a) Justify the general form $u_{0}(r)= \begin{cases}C \sin (k r) & \text { for } 0<r<a \\ \sin \left(k r+\delta_{0}\right) & \text { for } r>a\end{cases}$
of the radial wave function, and show that the phase shift δ_{0} and the amplitude factor C are determined by

$$
\sin \left(k a+\delta_{0}\right)=C \sin (k a), \quad \cos \left(k a+\delta_{0}\right)=C\left[\cos (k a)+\frac{\sin (k a)}{k a}\right]
$$

[10 marks]
(b) Use these equations to find the function $f(k a)$ in $\sigma_{0}=\pi a^{2} f(k a)$.
(c) What is the dominating term when $k a \ll 1$?
2. The angular momentum vector operator of a spin- $\frac{1}{2}$ particle is $\vec{J}=\vec{L}+\vec{S}$, where $\vec{L}=\vec{R} \times \vec{P}$ and $\vec{S}=\frac{1}{2} \hbar \vec{\sigma}$ are the vector operators for orbital angular momentum and spin, respectively. As usual, we denote the eigenvalues of \vec{L}^{2} and \vec{J}^{2} by $l(l+1) \hbar^{2}$ and $j(j+1) \hbar^{2}$, and those of J_{z}, L_{z}, S_{z} by $m \hbar, m_{l} \hbar, m_{s} \hbar$.
In the following, the value of l is arbitrary, but fixed.
(a) Show that the joint eigenkets $|j, m\rangle$ of \vec{J}^{2} and J_{z} are also eigenkets of $\vec{L} \cdot \vec{S}$ with eigenvalues $\frac{1}{2} l \hbar^{2}$ for $j=l+\frac{1}{2}$ and $-\frac{1}{2}(l+1) \hbar^{2}$ for $j=l-\frac{1}{2}$. [9 marks]
(b) Express the projectors on the subspaces to $j=l \pm \frac{1}{2}$ as simple functions of $\vec{L} \cdot \vec{S}$.
(c) When the system is prepared in a common eigenstate of L_{z} and S_{z}, what is the probability for finding $j=l+\frac{1}{2}$?
[8 marks]
[Check: For $\left(m_{l}, m_{s}\right)=\left(l, \frac{1}{2}\right)$ or $\left(m_{l}, m_{s}\right)=\left(-l,-\frac{1}{2}\right)$, the probability in (c) is 1.]
3. A harmonic oscillator (natural frequency ω, ladder operators A, A^{\dagger}, unperturbed Hamilton operator $H_{0}=\hbar \omega A^{\dagger} A$) is exposed to a time-independent perturbation that is specified by

$$
H_{1}=\hbar \Omega\left(A^{\dagger}+A\right)^{3} \quad \text { with } \quad \Omega>0
$$

At the initial time $t=0$, the oscillator is in the ground state of H_{0}.
(a) For short times, the probability $\operatorname{prob}(0 \rightarrow 0, t)$ for remaining in the ground state of H_{0} is of the form $\operatorname{prob}(0 \rightarrow 0, t)=1-(\gamma t)^{2}$. Determine the value of γ.
(b) Write $\overline{H_{1}}(t)=\mathrm{e}^{\mathrm{i} H_{0} t / \hbar} H_{1} \mathrm{e}^{-\mathrm{i} H_{0} t / \hbar}$ as an explicit polynomial in A^{\dagger} and A. [6 marks]
(c) What is the probability, to lowest order in Ω, for finding the oscillator in the 1st, 2nd, 3rd, ... excited state of H_{0} after time T has elapsed?
[9 marks]
4. Consider a two-level atom with the probability amplitudes for states 1 and 2 denoted by ψ_{1} and ψ_{2}, respectively. The Schrödinger equation for $\psi=\binom{\psi_{1}}{\psi_{2}}$ is $\mathrm{i} \hbar \frac{\partial}{\partial t} \psi(t)=\mathcal{H}(t) \psi(t)$ where the 2×2 Hamilton matrix $\mathcal{H}(t)$ has the timeindependent eigenvalues $\pm \hbar \omega$ and the time-dependent eigencolumns

$$
\psi_{ \pm}(t)=\frac{1}{\sqrt{2}}\binom{\mathrm{e}^{2 \pi \mathrm{i} t / T}}{ \pm \mathrm{e}^{-2 \pi \mathrm{i} t / T}} \quad \text { with } \quad T>0
$$

(a) Write $\psi(t)=\alpha(t) \psi_{+}(t)+\beta(t) \psi_{-}(t)$ and find the 2×2 matrix \mathcal{M} in

$$
\frac{\partial}{\partial t}\binom{\alpha(t)}{\beta(t)}=\mathrm{i} \mathcal{M}\binom{\alpha(t)}{\beta(t)}
$$

[Check: If you get it right, \mathcal{M} does not depend on t.]
(b) By solving this equation, find $\alpha(t)$ and $\beta(t)$ for $\alpha(0)=1, \beta(0)=0$. [10 marks]
(c) What is the dominating T dependence of the probability $|\beta(t=T)|^{2}$ for $\omega T \ll 1$? And what is it for $\omega T \gg 1$?

