1. A particle of mass M and kinetic energy $E = \frac{(\hbar k)^2}{2M}$ is scattered by the δ -shell potential

$$V(\vec{r}) = V_0 a \,\delta(r-a)$$
 with $a > 0$ and $V_0 = \frac{(\hbar/a)^2}{2M}$

Determine the total cross section σ_0 for s-wave scattering by the following steps.

(a) Justify the general form $u_0(r) = \begin{cases} C \sin(kr) & \text{for } 0 < r < a \\ \sin(kr + \delta_0) & \text{for } r > a \end{cases}$

of the radial wave function, and show that the phase shift δ_0 and the amplitude factor C are determined by

$$\sin(ka + \delta_0) = C\sin(ka), \qquad \cos(ka + \delta_0) = C\left[\cos(ka) + \frac{\sin(ka)}{ka}\right].$$
[10 marks]

- (b) Use these equations to find the function f(ka) in $\sigma_0 = \pi a^2 f(ka)$. [10 marks]
- (c) What is the dominating term when $ka \ll 1$? [5 marks]
- 2. The angular momentum vector operator of a spin- $\frac{1}{2}$ particle is $\vec{J} = \vec{L} + \vec{S}$, where $\vec{L} = \vec{R} \times \vec{P}$ and $\vec{S} = \frac{1}{2}\hbar\vec{\sigma}$ are the vector operators for orbital angular momentum and spin, respectively. As usual, we denote the eigenvalues of \vec{L}^2 and \vec{J}^2 by $l(l+1)\hbar^2$ and $j(j+1)\hbar^2$, and those of J_z , L_z , S_z by $m\hbar$, $m_l\hbar$, $m_s\hbar$.

In the following, the value of l is arbitrary, but fixed.

- (a) Show that the joint eigenkets $|j,m\rangle$ of \vec{J}^2 and J_z are also eigenkets of $\vec{L} \cdot \vec{S}$ with eigenvalues $\frac{1}{2}l\hbar^2$ for $j = l + \frac{1}{2}$ and $-\frac{1}{2}(l+1)\hbar^2$ for $j = l \frac{1}{2}$. [9 marks]
- (b) Express the projectors on the subspaces to $j = l \pm \frac{1}{2}$ as simple functions of $\vec{L} \cdot \vec{S}$. [8 marks]
- (c) When the system is prepared in a common eigenstate of L_z and S_z , what is the probability for finding $j = l + \frac{1}{2}$? [8 marks]

[Check: For $(m_l, m_s) = (l, \frac{1}{2})$ or $(m_l, m_s) = (-l, -\frac{1}{2})$, the probability in (c) is 1.]

3. A harmonic oscillator (natural frequency ω , ladder operators A, A^{\dagger} , unperturbed Hamilton operator $H_0 = \hbar \omega A^{\dagger} A$) is exposed to a time-independent perturbation that is specified by

$$H_1 = \hbar \Omega (A^{\dagger} + A)^3$$
 with $\Omega > 0$.

At the initial time t = 0, the oscillator is in the ground state of H_0 .

- (a) For short times, the probability prob(0 → 0, t) for remaining in the ground state of H₀ is of the form prob(0 → 0, t) = 1 (γt)². Determine the value of γ.
- (b) Write $\overline{H_1}(t) = e^{iH_0t/\hbar}H_1e^{-iH_0t/\hbar}$ as an explicit polynomial in A^{\dagger} and A. [6 marks]
- (c) What is the probability, to lowest order in Ω, for finding the oscillator in the 1st, 2nd, 3rd, ... excited state of H₀ after time T has elapsed? [9 marks]
- 4. Consider a two-level atom with the probability amplitudes for states 1 and 2 denoted by ψ_1 and ψ_2 , respectively. The Schrödinger equation for $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$ is $i\hbar \frac{\partial}{\partial t} \psi(t) = \mathcal{H}(t)\psi(t)$ where the 2 × 2 Hamilton matrix $\mathcal{H}(t)$ has the time-independent eigenvalues $\pm\hbar\omega$ and the time-dependent eigencolumns

$$\psi_{\pm}(t) = rac{1}{\sqrt{2}} egin{pmatrix} \mathrm{e}^{2\pi\mathrm{i}t/T} \ \pm \mathrm{e}^{-2\pi\mathrm{i}t/T} \end{pmatrix} \qquad ext{with} \quad T > 0 \, .$$

(a) Write $\psi(t) = \alpha(t)\psi_+(t) + \beta(t)\psi_-(t)$ and find the 2×2 matrix \mathcal{M} in

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = \mathrm{i} \, \mathcal{M} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} \, .$$

[Check: If you get it right, \mathcal{M} does not depend on t.] [8 marks] (b) By solving this equation, find $\alpha(t)$ and $\beta(t)$ for $\alpha(0) = 1$, $\beta(0) = 0$.

- [10 marks]
- (c) What is the dominating T dependence of the probability $|\beta(t = T)|^2$ for $\omega T \ll 1$? And what is it for $\omega T \gg 1$? [7 marks]