Problem 1 ($20=6+8+6$ points)
A harmonic oscillator (natural frequency ω, ladder operators A, A^{\dagger}, unperturbed Hamilton operator $H_{0}=\hbar \omega A^{\dagger} A$) is exposed to a time-independent perturbation that is specified by $H_{1}=\hbar\left(\Omega A^{\dagger}+\Omega^{*} A\right)$. At the initial time $t=0$, the oscillator is in the ground state of H_{0}.
(a) How large is the energy spread δH for $H=H_{0}+H_{1}$?
(b) What is the scattering operator $S(T)=\mathrm{e}^{\mathrm{i} H_{0} T / \hbar} \mathrm{e}^{-\mathrm{i} H T / \hbar}$ to first order in Ω ?
(c) What is the probability, to lowest order in Ω, for finding the oscillator in the $1 \mathrm{st}, 2 \mathrm{nd}, 3 \mathrm{rd}, \ldots$ excited state of H_{0} after time T has elapsed?

Problem 2 ($25=5+8+5+7$ points)
The state of a particle of mass M is described by the wave function

$$
\psi(\vec{r}, t)=C \frac{x+\mathrm{i} y}{r} \mathrm{e}^{-r / a} \mathrm{e}^{-\mathrm{i} \omega t}
$$

where $C>0, a>0$, and $\omega>0$.
(a) Determine the normalization constant C.
(b) Find the probability density $\rho(\vec{r}, t)$
and the probability current density $\vec{j}(\vec{r}, t)$.
(c) Verify that they obey the continuity equation.
(d) Show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int(\mathrm{~d} \vec{r}) \vec{r} \rho(\vec{r}, t)=\int(\mathrm{d} \vec{r}) \vec{j}(\vec{r}, t)
$$

holds, either by a general argument or by an explicit calculation for the $\rho(\vec{r}, t)$ and $\vec{j}(\vec{r}, t)$ of part (b).
Hint: Remember that $\vec{s} \cdot \vec{\nabla} \vec{r}=\vec{s}$ for any 3-vector \vec{s}.

Problem 3 ($25=12+8+5$ points)
A particle of mass M is scattered by the Gaussian potential

$$
V(\vec{r})=V_{0} \mathrm{e}^{-\frac{1}{2}(r / a)^{2}} \quad \text { with } a>0 \quad \text { and } V_{0}=\frac{(\hbar / a)^{2}}{2 M} .
$$

Apply the first-order Born approximation and determine
(a) the differential cross section $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}(\theta)$ in terms of a and $q=2 k \sin \frac{\theta}{2}$;
(b) the total cross section σ in terms of a and E / V_{0} with $E=\frac{(\hbar k)^{2}}{2 M}$;
(c) the dominating E dependence for $E \ll V_{0}$ and $E \gg V_{0}$.

Hint: Remember that $\mathrm{d} \theta \sin \theta=\frac{1}{k^{2}} \mathrm{~d} q q$.

Problem 4 ($30=5+10+10+5$ points)
Two-level atom; probability amplitudes for states 1 and 2 are ψ_{1} and ψ_{2}, respectively. The Schrödinger equation for $\psi=\binom{\psi_{1}}{\psi_{2}}$ is $\mathrm{i} \hbar \frac{\partial}{\partial t} \psi(t)=\mathcal{H}(t) \psi(t)$ with

$$
\mathcal{H}(t)=\hbar \omega\left(\begin{array}{cc}
\cos (2 \phi(t)) & \sin (2 \phi(t)) \\
\sin (2 \phi(t)) & -\cos (2 \phi(t))
\end{array}\right) \quad \text { where } \phi(t)=\pi t / T
$$

with $T>0$.
(a) Find the eigencolumns $\psi_{ \pm}(t)$ of $\mathcal{H}(t)$ to the eigenvalues $\pm \hbar \omega$.
(b) Write $\psi(t)=\alpha(t) \psi_{+}(t)+\beta(t) \psi_{-}(t)$ and find the 2×2 matrix \mathcal{M} in

$$
\frac{\partial}{\partial t}\binom{\alpha(t)}{\beta(t)}=\mathrm{i} \mathcal{M}\binom{\alpha(t)}{\beta(t)} .
$$

[Check: If you get it right, \mathcal{M} does not depend on t.]
(c) By solving this equation, find $\psi(T)$ for $\psi(0)=\binom{1}{0}$.
(d) What is the dominating T dependence of the probability $\left|\psi_{2}(T)\right|^{2}$ for $\omega T \ll 1$? And what is it for $\omega T \gg 1$?

