Problem 1 (20=6+8+6 points)

A harmonic oscillator (natural frequency ω , ladder operators A, A^{\dagger} , unperturbed Hamilton operator $H_0 = \hbar \omega A^{\dagger} A$) is exposed to a time-independent perturbation that is specified by $H_1 = \hbar (\Omega A^{\dagger} + \Omega^* A)$. At the initial time t = 0, the oscillator is in the ground state of H_0 .

- (a) How large is the energy spread δH for $H = H_0 + H_1$?
- (b) What is the scattering operator $S(T) = e^{iH_0T/\hbar}e^{-iHT/\hbar}$ to first order in Ω ?
- (c) What is the probability, to lowest order in Ω , for finding the oscillator in the 1st, 2nd, 3rd, ... excited state of H_0 after time T has elapsed?

Problem 2 (25=5+8+5+7 points)

The state of a particle of mass M is described by the wave function

$$\psi(\vec{r},t) = C \, \frac{x + \mathrm{i}y}{r} \, \mathrm{e}^{-r/a} \, \mathrm{e}^{-\mathrm{i}\omega t} \,,$$

where C > 0, a > 0, and $\omega > 0$.

- (a) Determine the normalization constant C.
- (b) Find the probability density $\rho(\vec{r}, t)$ and the probability current density $\vec{j}(\vec{r}, t)$.
- (c) Verify that they obey the continuity equation.
- (d) Show that

$$\frac{\mathrm{d}}{\mathrm{d}t} \int (\mathrm{d}\vec{r}) \, \vec{r} \rho(\vec{r},t) = \int (\mathrm{d}\vec{r}) \, \vec{j}(\vec{r},t)$$

holds, either by a general argument or by an explicit calculation for the $\rho(\vec{r},t)$ and $\vec{j}(\vec{r},t)$ of part (b).

Hint: Remember that $\vec{s} \cdot \vec{\nabla} \vec{r} = \vec{s}$ for any 3-vector \vec{s} .

Problem 3 (25=12+8+5 points)

A particle of mass M is scattered by the Gaussian potential

$$V(\vec{r}) = V_0 e^{-\frac{1}{2}(r/a)^2}$$
 with $a > 0$ and $V_0 = \frac{(\hbar/a)^2}{2M}$.

Apply the first-order Born approximation and determine

- (a) the differential cross section $\frac{d\sigma}{d\Omega}(\theta)$ in terms of a and $q = 2k \sin \frac{\theta}{2}$;
- (b) the total cross section σ in terms of a and E/V_0 with $E = \frac{(\hbar k)^2}{2M}$;
- (c) the dominating E dependence for $E \ll V_0$ and $E \gg V_0$.

Hint: Remember that $d\theta \sin \theta = \frac{1}{k^2} dq q$.

Problem 4 (30=5+10+10+5 points)

Two-level atom; probability amplitudes for states 1 and 2 are ψ_1 and ψ_2 , respectively. The Schrödinger equation for $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$ is $i\hbar \frac{\partial}{\partial t}\psi(t) = \mathcal{H}(t)\psi(t)$ with

$$\mathcal{H}(t) = \hbar \omega \begin{pmatrix} \cos(2\phi(t)) & \sin(2\phi(t)) \\ \sin(2\phi(t)) & -\cos(2\phi(t)) \end{pmatrix} \quad \text{where } \phi(t) = \pi t/T$$

with T > 0.

- (a) Find the eigencolumns $\psi_{\pm}(t)$ of $\mathcal{H}(t)$ to the eigenvalues $\pm \hbar \omega$.
- (b) Write $\psi(t) = \alpha(t)\psi_+(t) + \beta(t)\psi_-(t)$ and find the 2×2 matrix \mathcal{M} in

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = \mathrm{i} \, \mathcal{M} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} \, .$$

[Check: If you get it right, \mathcal{M} does not depend on t.]

- (c) By solving this equation, find $\psi(T)$ for $\psi(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- (d) What is the dominating T dependence of the probability $|\psi_2(T)|^2$ for $\omega T \ll 1$? And what is it for $\omega T \gg 1$?