Problem 1 ($25=10+10+5$ points)
The unitary operators U and V are the standard complementary pair of cyclic permutators of period N for an N-dimensional quantum degree of freedom. We consider odd N values only, that is: $N=2 M+1$ with $M=1,2,3, \ldots$, and define N^{2} operators in accordance with

$$
W_{00}=\frac{1}{N} \sum_{j=-M}^{M} \sum_{k=-M}^{M} U^{j} V^{k} \mathrm{e}^{\mathrm{i} \pi j k / N} \quad \text { and } \quad W_{l m}=V^{m} U^{-l} W_{00} U^{l} V^{-m}
$$

for $-M \leq l, m \leq M$.
(a) Show that W_{00} is hermitian. Then conclude that all $W_{l m} \mathrm{~s}$ are hermitian.
(b) Evaluate $\operatorname{tr}\left\{W_{l m}\right\}$ and $\operatorname{tr}\left\{W_{l m} W_{l^{\prime} m^{\prime}}\right\}$.
(c) Establish that an arbitrary operator F can be written as a weighted sum of the $W_{l m} \mathrm{~s}$,

$$
F=\frac{1}{N} \sum_{l, m} f_{l m} W_{l m} \quad \text { with } \quad f_{l m}=\operatorname{tr}\left\{F W_{l m}\right\}
$$

and express $\operatorname{tr}\{F\}$ in terms of the coefficients $f_{l m}$.

Problem 2 ($25=10+15$ points)
Motion along the x axis; position operator X, momentum operator P. The system is described by the statistical operator $\rho=\rho(X, P)$. In

$$
\begin{aligned}
R & \stackrel{[1]}{=} \int \frac{\mathrm{d} x \mathrm{~d} p}{2 \pi \hbar} \rho(X+x, P+p) \\
& \stackrel{[2]}{=} \int \frac{\mathrm{d} x \mathrm{~d} p}{2 \pi \hbar} \mathrm{e}^{-\mathrm{i} p X / \hbar} \mathrm{e}^{\mathrm{i} x P / \hbar} \rho(X, P) \mathrm{e}^{-\mathrm{i} x P / \hbar} \mathrm{e}^{\mathrm{i} p X / \hbar} \stackrel{[3]}{=} 1,
\end{aligned}
$$

equal sign [1] defines operator R, equal sign [2] is an identity, and equal sign [3] needs to be demonstrated. Therefore,
(a) show that [2] holds; and
(b) demonstrate [3]. (Hint: Consider $\left\langle x^{\prime}\right| R\left|p^{\prime}\right\rangle$.)

Problem 3 (25=15+10 points)
Motion along the x axis; position operator X, momentum operator P. The dynamics is governed by the Hamilton operator

$$
H=\frac{1}{2 M} P^{2}+\frac{1}{2} \gamma(X P+P X)
$$

with mass M and rate constant γ.
(a) Show that $\frac{\mathrm{d}}{\mathrm{d} t}(X P+P X)=\frac{2}{M} P^{2}$ and use this to find $X(t) P(t)+P(t) X(t)$ in terms of $X\left(t_{1}\right)$ and $P\left(t_{2}\right)$.
(b) Then employ the quantum action principle to determine first $\delta_{\gamma}\left\langle x, t_{1} \mid p, t_{2}\right\rangle$ and then $\left\langle x, t_{1} \mid p, t_{2}\right\rangle$.

Problem 4 ($25=8+7+10$ points)
Function $f(a)$ is related to its Fourier transform $g(\alpha)$ by $f(a)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{2 \pi} g(\alpha) \mathrm{e}^{\mathrm{i} \alpha a}$.
Operator A is such that $f(A)$ is well defined.
(a) Show that

$$
f^{\prime}(A)=\frac{\mathrm{d} f(A)}{\mathrm{d} A}=\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{2 \pi} \mathrm{i} \alpha g(\alpha) \mathrm{e}^{\mathrm{i} \alpha A}
$$

and

$$
\delta f(A)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \alpha}{2 \pi} g(\alpha) \int_{0}^{\alpha} \mathrm{d} \beta \mathrm{e}^{\mathrm{i} \beta A} \mathrm{i} \delta A \mathrm{e}^{\mathrm{i}(\alpha-\beta) A} .
$$

(b) When is $\delta f(A)=f^{\prime}(A) \delta A$ true?
(c) Show that $\operatorname{tr}\{\delta f(A)\}=\operatorname{tr}\left\{f^{\prime}(A) \delta A\right\}$ holds even if $\delta f(A) \neq f^{\prime}(A) \delta A$.

