1. The statistical operator of a one-dimensional harmonic oscillator (with ladder operators A, A^{\dagger} and Fock state kets $|n\rangle$) is

$$\rho = Z(\beta) e^{-\beta A^{\dagger} A} = Z(\beta) \sum_{n=0}^{\infty} |n\rangle e^{-n\beta} \langle n| \quad \text{with } \beta > 0.$$

- (a) Determine the normalization factor $Z(\beta)$. (8 marks)
- (b) Use a basic property of the trace, and a basic property of the ladder operators, to show that the expectation values of powers of $A^{\dagger}A$ obey

$$\left\langle \left(A^{\dagger}A\right)^{k}\right\rangle = e^{-\beta} \left\langle \left(A^{\dagger}A+1\right)^{k}\right\rangle$$

for $k = 1, 2, 3, \ldots$ (10 marks)

(c) Find the expectation value and the spread of $A^{\dagger}A$, either by exploiting the identity of part (b) or by any other method. (7 marks)

- **2.** Orbital angular momentum: vector operator \vec{L} with components L_1 , L_2 , and L_3 . As usual, we denote by $|l, m\rangle$ the joint eigenkets of \vec{L}^2 and L_3 (eigenvalue $\hbar^2 l(l+1)$ of \vec{L}^2 ; eigenvalue $\hbar m$ of L_3).
 - (a) Determine the spreads of L_1 and L_2 in the state with ket $|l, m\rangle$. For given l, what are the largest and smallest values of these spreads? (10 marks)
 - (b) Consider the l = 1 superposition state

$$|\rangle = \frac{1}{\sqrt{2}} (|1,1\rangle + |1,-1\rangle).$$

Determine the expectation values of L_1 , L_2 , L_3 as well as L_1^2 , L_2^2 , L_3^2 , and then their spreads δL_1 , δL_2 , δL_3 . (15 marks)

[Hint: Remember about the ladder operators $L_{\pm} = L_1 \pm iL_2$.]

3. Consider the one-dimensional Hamilton operator

$$H = \frac{1}{2M} P^2 - \frac{(\hbar \kappa)^2}{\sqrt{2}M} e^{-\frac{1}{2}(\kappa X)^2},$$

where X is the particle's position operator, P is its momentum operator, M is its mass, and $\kappa > 0$ determines the strength and range of the Gaussian potential energy.

(a) Determine the expectation values of the kinetic and of the potential energy,

$$E_{\rm kin} = \frac{1}{2M} \left\langle P^2 \right\rangle$$
 and $E_{\rm pot} = -\frac{(\hbar\kappa)^2}{\sqrt{2}M} \left\langle e^{-\frac{1}{2}(\kappa X)^2} \right\rangle$,

for a Gaussian wave function $\psi(x) = \langle x | \rangle = \frac{(2\pi)^{-1/4}}{\sqrt{a}} e^{-\left(\frac{x}{2a}\right)^2}$ (with a > 0). Write $E_{\rm kin}$ and $E_{\rm pot}$ as multiples of $(\hbar \kappa)^2/(2M)$. (15 marks)

- (b) Use them to get an upper bound on the ground-state energy E_0 of the Hamilton operator H. [Hint: Remember the Rayleigh–Ritz variational principle; optimize the value of $y \equiv (\kappa a)^2$.] (10 marks)
- 4. The Hamilton operator

$$H = \hbar \omega A^{\dagger} A + \frac{1}{2} \mathrm{i} \hbar \Omega (A^{\dagger^2} - A^2) \qquad \text{with} \quad -\omega < \Omega < \omega$$

is that of a one-dimensional harmonic oscillator (ladder operators A^{\dagger} and A, circular frequency ω), with a perturbation proportional to $A^{\dagger^2} - A^2$ of strength Ω .

- (a) For n = 0, 1, 2, ..., find the *n*-th eigenvalue of H to second order in Ω by an application of Rayleigh–Schrödinger perturbation theory. (12 marks)
- (b) Determine the second-order approximation to the ground-state energy in Brillouin–Wigner perturbation theory. (8 marks)
- (c) Compare your results of parts (a) and (b) with the exact energy eigenvalues $E_n = (n + \frac{1}{2})\hbar\sqrt{\omega^2 \Omega^2} \frac{1}{2}\hbar\omega$. (5 marks)