1. The statistical operator of a one-dimensional harmonic oscillator (with ladder operators A, A^{\dagger} and Fock state kets $|n\rangle$) is

$$
\rho=Z(\beta) \mathrm{e}^{-\beta A^{\dagger} A}=Z(\beta) \sum_{n=0}^{\infty}|n\rangle \mathrm{e}^{-n \beta}\langle n| \quad \text { with } \beta>0 .
$$

(a) Determine the normalization factor $Z(\beta)$. (8 marks)
(b) Use a basic property of the trace, and a basic property of the ladder operators, to show that the expectation values of powers of $A^{\dagger} A$ obey

$$
\left\langle\left(A^{\dagger} A\right)^{k}\right\rangle=\mathrm{e}^{-\beta}\left\langle\left(A^{\dagger} A+1\right)^{k}\right\rangle
$$

for $k=1,2,3, \ldots \quad$ (10 marks)
(c) Find the expectation value and the spread of $A^{\dagger} A$, either by exploiting the identity of part (b) or by any other method. (7 marks)
2. Orbital angular momentum: vector operator \vec{L} with components L_{1}, L_{2}, and L_{3}. As usual, we denote by $|l, m\rangle$ the joint eigenkets of \vec{L}^{2} and L_{3} (eigenvalue $\hbar^{2} l(l+1)$ of \vec{L}^{2}; eigenvalue $\hbar m$ of $\left.L_{3}\right)$.
(a) Determine the spreads of L_{1} and L_{2} in the state with ket $|l, m\rangle$. For given l, what are the largest and smallest values of these spreads? (10 marks)
(b) Consider the $l=1$ superposition state

$$
\left\rangle=\frac{1}{\sqrt{2}}(|1,1\rangle+|1,-1\rangle) .\right.
$$

Determine the expectation values of L_{1}, L_{2}, L_{3} as well as $L_{1}^{2}, L_{2}^{2}, L_{3}^{2}$, and then their spreads $\delta L_{1}, \delta L_{2}, \delta L_{3}$. (15 marks)
[Hint: Remember about the ladder operators $L_{ \pm}=L_{1} \pm \mathrm{i} L_{2}$.]
3. Consider the one-dimensional Hamilton operator

$$
H=\frac{1}{2 M} P^{2}-\frac{(\hbar \kappa)^{2}}{\sqrt{2} M} \mathrm{e}^{-\frac{1}{2}(\kappa X)^{2}}
$$

where X is the particle's position operator, P is its momentum operator, M is its mass, and $\kappa>0$ determines the strength and range of the Gaussian potential energy.
(a) Determine the expectation values of the kinetic and of the potential energy,

$$
E_{\text {kin }}=\frac{1}{2 M}\left\langle P^{2}\right\rangle \quad \text { and } \quad E_{\text {pot }}=-\frac{(\hbar \kappa)^{2}}{\sqrt{2} M}\left\langle\mathrm{e}^{-\frac{1}{2}(\kappa X)^{2}}\right\rangle,
$$

for a Gaussian wave function $\psi(x)=\langle x \mid\rangle=\frac{(2 \pi)^{-1 / 4}}{\sqrt{a}} \mathrm{e}^{-\left(\frac{x}{2 a}\right)^{2}} \quad$ (with $a>0$).
Write $E_{\text {kin }}$ and $E_{\text {pot }}$ as multiples of $(\hbar \kappa)^{2} /(2 M)$. (15 marks)
(b) Use them to get an upper bound on the ground-state energy E_{0} of the Hamilton operator H. [Hint: Remember the Rayleigh-Ritz variational principle; optimize the value of $y \equiv(\kappa a)^{2}$.] (10 marks)
4. The Hamilton operator

$$
H=\hbar \omega A^{\dagger} A+\frac{1}{2} \mathrm{i} \hbar \Omega\left(A^{\dagger^{2}}-A^{2}\right) \quad \text { with }-\omega<\Omega<\omega
$$

is that of a one-dimensional harmonic oscillator (ladder operators A^{\dagger} and A, circular frequency ω), with a perturbation proportional to $A^{\dagger^{2}}-A^{2}$ of strength Ω.
(a) For $n=0,1,2, \ldots$, find the n-th eigenvalue of H to second order in Ω by an application of Rayleigh-Schrödinger perturbation theory. (12 marks)
(b) Determine the second-order approximation to the ground-state energy in Brillouin-Wigner perturbation theory. (8 marks)
(c) Compare your results of parts (a) and (b) with the exact energy eigenvalues $E_{n}=\left(n+\frac{1}{2}\right) \hbar \sqrt{\omega^{2}-\Omega^{2}}-\frac{1}{2} \hbar \omega$. (5 marks)

